Active flight increases the gain of visual motion processing in Drosophila

[1]  M Egelhaaf,et al.  Behavioural state affects motion-sensitive neurones in the fly visual system , 2010, Journal of Experimental Biology.

[2]  Holger G Krapp,et al.  State-dependent performance of optic-flow processing interneurons. , 2009, Journal of neurophysiology.

[3]  Michael H. Dickinson,et al.  Motmot, an open-source toolkit for realtime video acquisition and analysis , 2009, Source Code for Biology and Medicine.

[4]  Kei Ito,et al.  A map of octopaminergic neurons in the Drosophila brain , 2009, The Journal of comparative neurology.

[5]  Roger D. Santer,et al.  Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust. , 2008, Journal of neurophysiology.

[6]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[7]  Brian J. Duistermars,et al.  Flies see second-order motion , 2008, Current Biology.

[8]  S. Laughlin,et al.  Energy limitation as a selective pressure on the evolution of sensory systems , 2008, Journal of Experimental Biology.

[9]  Michael H. Dickinson,et al.  A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila , 2008, Current Biology.

[10]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[11]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[12]  S. Higashijima,et al.  Zebrafish and motor control over the last decade , 2008, Brain Research Reviews.

[13]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[14]  B. Brembs,et al.  Flight Initiation and Maintenance Deficits in Flies with Genetically Altered Biogenic Amine Levels , 2007, The Journal of Neuroscience.

[15]  Irina Sinakevitch,et al.  Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes , 2007, Developmental neurobiology.

[16]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[17]  S.N. Fry,et al.  A 6000 Hz Computer Vision System for Real-Time Wing Beat Analysis of Drosophila , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[18]  Michael H Dickinson,et al.  Role of calcium in the regulation of mechanical power in insect flight. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[20]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[21]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[22]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[23]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[24]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[25]  Michael H Dickinson,et al.  Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. , 2002, The Journal of experimental biology.

[26]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[27]  M. Dickinson,et al.  The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. , 2001, The Journal of experimental biology.

[28]  Robert A. Harris,et al.  Contrast Gain Reduction in Fly Motion Adaptation , 2000, Neuron.

[29]  Masakazu Konishi,et al.  Gating of auditory responses in the vocal control system of awake songbirds , 1998, Nature Neuroscience.

[30]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[31]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[32]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[33]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[34]  K. Pearson,et al.  Alteration of bursting properties in interneurons during locust flight. , 1993, Journal of neurophysiology.

[35]  J. Lynch,et al.  Liquid junction potentials and small cell effects in patch-clamp analysis , 1991, The Journal of Membrane Biology.

[36]  R. North,et al.  5‐Hydroxytryptamine acts at 5‐HT2 receptors to decrease potassium conductance in rat nucleus accumbens neurones. , 1989, The Journal of physiology.

[37]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[38]  K. Tomioka,et al.  Response Modification of Cricket Sensory Interneurons during Flight(Physiology) , 1984 .

[39]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[40]  R. Hengstenberg Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora , 1982, Journal of comparative physiology.

[41]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[42]  R. Hengstenberg Spike responses of ‘non-spiking’ visual interneurone , 1977, Nature.

[43]  C. Rowell,et al.  Variable Responsiveness of a Visual Interneurone in the Free-Moving Locust, and its Relation to Behaviour and Arousal , 1971 .

[44]  Karl Georg Götz,et al.  Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.

[45]  S. Benzer BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. Basbaum The senses : a comprehensive reference , 2008 .

[47]  Daniel Robert,et al.  The Senses - a comprehensive reference , 2008 .

[48]  H. Krapp,et al.  Sensory Systems and Flight Stability: What do Insects Measure and Why? , 2007 .

[49]  A. Borst,et al.  The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: II. Active Membrane Properties , 2004, Journal of Computational Neuroscience.

[50]  K Hausen,et al.  Decoding of retinal image flow in insects. , 1993, Reviews of oculomotor research.

[51]  Jan-Marino Ramirez,et al.  A Multifunctional Role for Octopamine in Locust Flight , 1993 .

[52]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .