Role of cortical feedback in the receptive field structure and nonlinear response properties of somatosensory thalamic neurons

Abstract. Previous studies have suggested that the descending pathway from the primary somatosensory (SI) cortex to the ventral posterior nucleus of the thalamus has only a mild facilitative influence over thalamic neurons. Given the large numbers of corticothalamic terminations within the rat somatosensory thalamus and their complex topography, we sought to examine the role of corticothalamic feedback in the genesis of spatiotemporal receptive fields and the integration of complex tactile stimuli in the thalamus. By combining focal cortical inactivation (produced by microinjection of the GABAA agonist muscimol), with chronic multielectrode recordings, we observed that feedback from the rat SI cortex has multiple influences on its primary thalamic relay, the ventral posterior medial (VPM) nucleus. Our data demonstrate that, when single-whisker stimuli were used, the elimination of cortical feedback caused significant changes in the spatiotemporal structure of the receptive fields of VPM neurons. Cortical feedback also accounted for the nonlinear summation of VPM neural responses to simultaneously stimulated whiskers, in effect "linearizing" the responses. These results argue that the integration and transmission of tactile information through VPM are strongly influenced by the state of SI cortex.

[1]  R. Kalil,et al.  Corticofugal influence on activity of lateral geniculate neurons in the cat. , 1970, Journal of neurophysiology.

[2]  G L Gerstein,et al.  Spatiotemporal organization of cat lateral geniculate receptive fields. , 1976, Journal of neurophysiology.

[3]  S. Wise,et al.  Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex , 1977, The Journal of comparative neurology.

[4]  M. Abeles,et al.  Multispike train analysis , 1977, Proceedings of the IEEE.

[5]  J. M. Gibson,et al.  Corticofugal influences in the rat on responses of neurons in the trigeminal nucleus interpolaris to mechanical stimulation , 1983, Neuroscience Letters.

[6]  T. Morrow,et al.  Responsiveness of ventrobasal thalamic neurons after suppression of S1 cortex in the anesthetized rat , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  T. Morrow,et al.  Corticofugal influences of S1 cortex on ventrobasal thalamic neurons in the awake rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  P. C. Murphy,et al.  Corticofugal feedback influences the generation of length tuning in the visual pathway , 1987, Nature.

[9]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.

[10]  J K Chapin,et al.  Mapping the effects of SI cortex stimulation on somatosensory relay neurons in the rat thalamus: direct responses and afferent modulation. , 1990, Somatosensory & motor research.

[11]  M. Jacquin,et al.  Structure-function relationships in rat brain stem subnucleus interpolaris. VIII. Cortical inputs. , 1990, Journal of neurophysiology.

[12]  John H. Martin Autoradiographic estimation of the extent of reversible inactivation produced by microinjection of lidocaine and muscimol in the rat , 1991, Neuroscience Letters.

[13]  H. Killackey,et al.  Thalamic processing of vibrissal information in the rat. I. Afferent input to the medial ventral posterior and posterior nuclei , 1991, The Journal of comparative neurology.

[14]  Hanspeter A. Mallot,et al.  Temporal Structure of Cortical Information Processing: Cortical Architecture, Oscillations, and Non-Separability of Spatio-Temporal Receptive Field Organization , 1991 .

[15]  D. Margoliash,et al.  Temporal and harmonic combination-sensitive neurons in the zebra finch's HVc , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex , 1992, The Journal of comparative neurology.

[17]  D J Woodward,et al.  Dynamic and distributed properties of many-neuron ensembles in the ventral posterior medial thalamus of awake rats. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[18]  N. Suga,et al.  Combination-sensitive neurons in the primary auditory cortex of the mustached bat , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  M. Nicolelis,et al.  Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information , 1993, Nature.

[20]  M F Jacquin,et al.  Differential Foci and Synaptic Organization of the Principal and Spinal Trigeminal Projections to the Thalamus in the Rat , 1994, The European journal of neuroscience.

[21]  M. Nicolelis,et al.  Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[24]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[25]  R. Marrocco,et al.  The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate nucleus cells , 1996, Brain Research.

[26]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[27]  T. Salt,et al.  Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus , 1996, Progress in Neurobiology.

[28]  N Suga,et al.  Corticofugal Modulation of Time-Domain Processing of Biosonar Information in Bats , 1996, Science.

[29]  M A Nicolelis,et al.  Nonlinear processing of tactile information in the thalamocortical loop. , 1997, Journal of neurophysiology.

[30]  M. Nicolelis Dynamic and Distributed Somatosensory Representations as the Substrate for Cortical and Subcortical Plasticity , 1997 .

[31]  M. Nicolelis,et al.  Immediate and simultaneous sensory reorganization at cortical and subcortical levels of the somatosensory system. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Doupe Song- and Order-Selective Neurons in the Songbird Anterior Forebrain and their Emergence during Vocal Development , 1997, The Journal of Neuroscience.

[33]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[34]  M. Nicolelis,et al.  Reconstructing the Engram: Simultaneous, Multisite, Many Single Neuron Recordings , 1997, Neuron.

[35]  N. Suga,et al.  Corticofugal modulation of frequency processing in bat auditory system , 1997, Nature.

[36]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[37]  J. Hahm,et al.  Cortically induced thalamic plasticity in the primate somatosensory system , 1998, Nature Neuroscience.

[38]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[40]  Nobuo Suga,et al.  Corticofugal modulation of the midbrain frequency map in the bat auditory system , 1998, Nature Neuroscience.

[41]  M. Merzenich,et al.  Optimizing sound features for cortical neurons. , 1998, Science.

[42]  H. Sato,et al.  Temporal Characteristics of Response Integration Evoked by Multiple Whisker Stimulations in the Barrel Cortex of Rats , 1999, The Journal of Neuroscience.

[43]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[44]  H. Scheich,et al.  Processing of sound sequences in macaque auditory cortex: response enhancement. , 1999, Journal of neurophysiology.

[45]  M. Nicolelis,et al.  Immediate thalamic sensory plasticity depends on corticothalamic feedback. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Salt,et al.  Group III metabotropic glutamate receptors control corticothalamic synaptic transmission in the rat thalamus in vitro , 1999, The Journal of physiology.

[47]  S. Shimegi,et al.  Physiological and Anatomical Organization of Multiwhisker Response Interactions in the Barrel Cortex of Rats , 2000, The Journal of Neuroscience.

[48]  Miguel A. L Nicolelis,et al.  A multi-channel whisker stimulator for producing spatiotemporally complex tactile stimuli , 2001, Journal of Neuroscience Methods.