Gluing Non-commutative Twistor Spaces

We describe a general procedure, based on Gerstenhaber–Schack complexes, for extending to quantized twistor spaces the Donaldson–Friedman gluing of twistor spaces via deformation theory of singular spaces. We consider in particular various possible quantizations of twistor spaces that leave the underlying spacetime manifold classical, including the geometric quantization of twistor spaces originally constructed by the second author, as well as some variants based on non-commutative geometry. We discuss specific aspects of the gluing construction for these different quantization procedures.

[1]  C. LeBrun Ambi-twistors and Einstein's equations , 1985 .

[2]  Branimir Ćaćić A Reconstruction Theorem for Almost-Commutative Spectral Triples , 2011, 1101.5908.

[3]  A. Connes Geometry from the spectral point of view , 1995 .

[4]  Murray Gerstenhaber,et al.  The cohomology of presheaves of algebras. I. Presheaves over a partially ordered set , 1988 .

[5]  L. Da̧browski,et al.  Dirac operator on noncommutative principal circle bundles , 2013, 1305.6185.

[6]  Giovanni Landi,et al.  Noncommutative Manifolds, the Instanton Algebra¶and Isospectral Deformations , 2001 .

[7]  A. Connes On the spectral characterization of manifolds , 2008, 0810.2088.

[8]  G. Landi,et al.  Instantons and vortices on noncommutative toric varieties , 2012, 1212.3469.

[9]  R. S. Ward Self-dual space-times with cosmological constant , 1980 .

[10]  J. Madore,et al.  The fuzzy sphere , 1992 .

[11]  M. Yamashita Connes–Landi Deformation of Spectral Triples , 2010, 1006.4420.

[12]  M. Lapidus,et al.  Dirac operators and spectral triples for some fractal sets built on curves , 2006, math/0610222.

[13]  G. C. Wick Properties of Bethe-Salpeter Wave Functions , 1954 .

[14]  Quantisation of Twistor Theory by Cocycle Twist , 2007, math/0701893.

[15]  R. Penrose Nonlinear gravitons and curved twistor theory , 1976 .

[16]  The Fuzzy Sphere ⋆-Product and Spin Networks , 2001, hep-th/0103070.

[17]  K. Kodaira On Stability of Compact Submanifolds of Complex Manifolds , 1963 .

[18]  S. Donaldson,et al.  Connected sums of self-dual manifolds and deformations of singular spaces , 1989 .

[19]  Y. Manin,et al.  Symbolic Dynamics, Modular Curves, and Bianchi IX Cosmologies , 2015, 1504.04005.

[20]  B. Fedosov A simple geometrical construction of deformation quantization , 1994 .

[21]  N. Hitchin KAHLERIAN TWISTOR SPACES , 1981 .

[22]  Alain Connes,et al.  Non-commutative differential geometry , 1985 .

[23]  Michael Atiyah,et al.  Twistor theory at fifty: from contour integrals to twistor strings , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  R. Friedman Global smoothings of varieties with normal crossings , 1983 .

[25]  A. Connes,et al.  Institute for Mathematical Physics Noncommutative Finite–dimensional Manifolds Spherical Manifolds and Related Examples Noncommutative Finite-dimensional Manifolds I. Spherical Manifolds and Related Examples , 2022 .

[26]  M. Marcolli,et al.  Bell Polynomials and Brownian Bridge in Spectral Gravity Models on Multifractal Robertson–Walker Cosmologies , 2018, Annales Henri Poincaré.

[27]  F. Bayen,et al.  Deformation theory and quantization. I. Deformations of symplectic structures , 1978 .

[28]  Roger Penrose,et al.  Zero rest-mass fields including gravitation: asymptotic behaviour , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  Robert E. Gompf A new construction of symplectic manifolds , 1995 .

[30]  G. Landi,et al.  Algebraic deformations of toric varieties II. Noncommutative instantons , 2011, 1106.5708.

[31]  A Hopf Bundle Over a Quantum Four-Sphere from the Symplectic Group , 2004, math/0407342.

[32]  R. Penrose Twistor quantisation and curved space-time , 1968 .

[33]  Branimir Ćaćić A reconstruction theorem for Connes–Landi deformations of commutative spectral triples , 2014, 1408.4429.

[34]  Gromov-Hausdorff Distance for Quantum Metric Spaces/Matrix Algebras Converge to the Sphere for Quantum Gromov-Hausdorff Distance , 2001, math/0108005.

[35]  S. Waldmann,et al.  Deformation quantization of surjective submersions and principal fibre bundles , 2007, 0711.2965.

[36]  Noncommutative 3-sphere: A model of noncommutative contact algebras , 1998 .

[37]  M. Marcolli,et al.  Continued fractions, modular symbols, and noncommutative geometry , 2001, math/0102006.

[38]  Roger Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[39]  R. Penrose Quasi-local mass and angular momentum in general relativity , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  A. Sitarz Rieffel's Deformation Quantization and Isospectral Deformations , 2001, math/0102075.

[41]  G. Landi,et al.  Algebraic deformations of toric varieties I. General constructions , 2010, 1001.1242.

[42]  D. Spencer,et al.  On Deformations of Complex Analytic Structures, II , 1958 .

[43]  W. S. Piper Algebraic deformation theory , 1967 .

[44]  M. Atiyah,et al.  Self-duality in four-dimensional Riemannian geometry , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[45]  G. Landi,et al.  Principal Fibrations from Noncommutative Spheres , 2004, math/0410077.

[46]  Y. Manin,et al.  Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology ? , 2014, 1402.2158.

[47]  G. Landi,et al.  Differential and Twistor Geometry of the Quantum Hopf Fibration , 2011, 1103.0419.

[48]  Françcois Nadaud On Continuous and Differential Hochschild Cohomology , 1999 .