Optimal parallel machines scheduling with availability constraints
暂无分享,去创建一个
[1] Jacques Carlier,et al. An Exact Method for Solving the Multi-Processor Flow-Shop , 2000, RAIRO Oper. Res..
[2] Mohamed Haouari,et al. An improved max-flow-based lower bound for minimizing maximum lateness on identical parallel machines , 2003, Oper. Res. Lett..
[3] J. Erschler,et al. Ordonnancement de tâches sous contraintes: une approche énergetique , 1992 .
[4] Philippe Baptiste,et al. Solving hybrid flow shop problem using energetic reasoning and global operations , 2001 .
[5] Philippe Baptiste,et al. Tight LP bounds for resource constrained project scheduling , 2004, OR Spectr..
[6] David Pisinger,et al. Dynamic Programming on the Word RAM , 2003, Algorithmica.
[7] Eric Pinson,et al. Jackson's Pseudo Preemptive Schedule for the Pm/ri, qi/Cmax scheduling problem , 1998, Ann. Oper. Res..
[8] E.L. Lawler,et al. Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .
[9] Chung-Yee Lee,et al. Parallel machines scheduling with nonsimultaneous machine available time , 1991, Discret. Appl. Math..
[10] Jacques Carlier,et al. Scheduling jobs with release dates and tails on identical machines to minimize the makespan , 1987 .
[11] Günter Schmidt,et al. Scheduling with limited machine availability , 2000, Eur. J. Oper. Res..
[12] Abdelkader Lahrichi,et al. Ordonnancements. La notion de «parties obligatoires» et son application aux problèmes cumulatifs , 1982 .
[13] H. Kellerer. Algorithms for multiprocessor scheduling with machine release times , 1998 .
[14] W. A. Horn. Some simple scheduling algorithms , 1974 .
[15] Chung-Yee Lee,et al. A note on "parallel machine scheduling with non-simultaneous machine available time" , 2000, Discret. Appl. Math..
[16] Paolo Toth,et al. An exact algorithm for the subset sum problem , 2002, Eur. J. Oper. Res..
[17] S. Webster. A general lower bound for the makespan problem , 1996 .
[18] Eugene L. Lawler,et al. Preemptive scheduling of uniform machines subject to release dates : (preprint) , 1979 .
[19] Philippe Baptiste,et al. Satisfiability tests and time‐bound adjustmentsfor cumulative scheduling problems , 1999, Ann. Oper. Res..
[20] J. Carlier,et al. Une méthode arborescente pour résoudre les problèmes cumulatifs , 1991 .
[21] Peter L. Hammer,et al. Discrete Applied Mathematics , 1993 .
[22] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[23] Mohamed Haouari,et al. Minimizing makespan on parallel machines subject to release dates and delivery times , 2002 .
[24] Hans Kellerer,et al. An efficient fully polynomial approximation scheme for the Subset-Sum Problem , 2003, J. Comput. Syst. Sci..