Improving the Accuracy of Urban Land Cover Classification Using Radarsat-2 PolSAR Data

Land cover classification is one of the most important applications of polarimetric SAR images, especially in urban areas. There are numerous features that can be extracted from these images, hence feature selection plays an important role in PolSAR image classification. In this study, three main steps are used to address this task: (1) feature extraction in the form of three categories, namely original data features, decomposition features, and SAR discriminators; (2) feature selection in the framework of the single and multi-objective optimization; and (3) image classification using the best subset of features. In single objective methods, we employ genetic algorithms (GAs) and support vector machines (SVMs) or multi-layer perceptron (MLP) neural network in order to maximize classification accuracy. Then a new method is proposed to perform an efficient land cover classification of the San Francisco Bay urban area based on the multi-objective optimization approach. The objectives are to minimize the error of classification and the number of selected PolSAR parameters. The experimental results on Radarsat-2 fine-quad data show that the proposed method outperforms the single objective approaches tested against it, while saving computational complexity. Finally, we show that the our method has a better performance than the SVM with full set of features and the Wishart classifier which is based on the covariance matrix.

[1]  D. Evans,et al.  Radar polarimetry: analysis tools and applications , 1988 .

[2]  Guanghui Zhang,et al.  Correlation Coefficients Between Polarization Signatures for Evaluating Polarimetric Information Preservation , 2011, IEEE Geoscience and Remote Sensing Letters.

[3]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[4]  W. Holm,et al.  On radar polarization mixed target state decomposition techniques , 1988, Proceedings of the 1988 IEEE National Radar Conference.

[5]  Christian Igel,et al.  Multi-objective Model Selection for Support Vector Machines , 2005, EMO.

[6]  Yves Chauvin,et al.  Backpropagation: theory, architectures, and applications , 1995 .

[7]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[8]  Huan Liu,et al.  Consistency-based search in feature selection , 2003, Artif. Intell..

[9]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[10]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  Jean-Claude Souyris,et al.  Support Vector Machine for Multifrequency SAR Polarimetric Data Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[13]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[14]  Carlos López-Martínez,et al.  An evaluation of PolSAR speckle filters , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[15]  Moncef Gabbouj,et al.  Evolutionary RBF classifier for polarimetric SAR images , 2012, Expert Syst. Appl..

[16]  Xia Li,et al.  A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data , 2012 .

[17]  Giorgio Franceschetti,et al.  A canonical problem in electromagnetic backscattering from buildings , 2002, IEEE Trans. Geosci. Remote. Sens..

[18]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[19]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[20]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[21]  Chih-Jen Lin,et al.  A Comparison of Methods for Multi-class Support Vector Machines , 2015 .

[22]  Bernhard Schölkopf,et al.  Feature selection for support vector machines by means of genetic algorithm , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[23]  Zexuan Zhu,et al.  Wrapper–Filter Feature Selection Algorithm Using a Memetic Framework , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  E. Pottier Radar target decomposition theorems and unsupervized classification of full polarimetric SAR data , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[25]  Yifang Ban,et al.  RADARSAT Fine-Beam SAR Data for Land-Cover Mapping and Change Detection in the Rural-Urban Fringe of the Greater Toronto Area , 2007, 2007 Urban Remote Sensing Joint Event.

[26]  Thuy Le Toan,et al.  Polarimetric discriminators for SAR images , 1992, IEEE Trans. Geosci. Remote. Sens..

[27]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[28]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[29]  Giuseppe Satalino,et al.  Comparison of polarimetric SAR observables in terms of classification performance , 2008 .

[30]  S. Cloude Target decomposition theorems in radar scattering , 1985 .

[31]  Christian Igel,et al.  Multi-Objective Optimization of Support Vector Machines , 2006, Multi-Objective Machine Learning.

[32]  G. Narzisi An Experimental Multi-Objective Study of the SVM Model Selection problem , 2008 .

[33]  J. Zyl,et al.  Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .

[34]  A. Mansourian,et al.  Polarimetric SAR feature selection using a genetic algorithm , 2011 .

[35]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[36]  J. Huynen Phenomenological theory of radar targets , 1970 .

[37]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[39]  E. Krogager New decomposition of the radar target scattering matrix , 1990 .

[40]  Yasser Maghsoudi,et al.  Polarimetric classification of Boreal forest using nonparametric feature selection and multiple classifiers , 2012, Int. J. Appl. Earth Obs. Geoinformation.