A new spatio-spectral morphological segmentation for multi-spectral remote-sensing images

A general framework of spatio-spectral segmentation for multi-spectral images is introduced in this paper. The method is based on classification-driven stochastic watershed (WS) by Monte Carlo simulations, and it gives more regular and reliable contours than standard WS. The present approach is decomposed into several sequential steps. First, a dimensionality-reduction stage is performed using the factor-correspondence analysis method. In this context, a new way to select the factor axes (eigenvectors) according to their spatial information is introduced. Then, a spectral classification produces a spectral pre-segmentation of the image. Subsequently, a probability density function (pdf) of contours containing spatial and spectral information is estimated by simulation using a stochastic WS approach driven by the spectral classification. The pdf of the contours is finally segmented by a WS controlled by markers from a regularization of the initial classification.

[1]  Serge Beucher,et al.  Use of watersheds in contour detection , 1979 .

[2]  Dana H. Ballard Feature Selection and Classification , 1976 .

[3]  Guillaume Noyel,et al.  Regionalized Random Germs by a Classification for Probabilistic Watershed Application: Angiogenesis Imaging Segmentation , 2010 .

[4]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[5]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[6]  Luísa Castro,et al.  Hierarchical clustering of multispectral images using combined spectral and spatial criteria , 2005, IEEE Geoscience and Remote Sensing Letters.

[7]  G. Polder Spectral imaging for measuring biochemicals in plant material , 2004 .

[8]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Jesús Angulo,et al.  On distances, paths and connections for hyperspectral image segmentation , 2007, ISMM.

[10]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[11]  Grégoire Mercier,et al.  Classification of hyperspectral images with nonlinear filtering and support vector machines , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[12]  Jesús Angulo,et al.  Modelling and segmentation of colour images in polar representations , 2007, Image Vis. Comput..

[13]  Pierre Soille,et al.  Morphological Texture Features for Unsupervised and Supervised Segmentations of Natural Landscapes , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Dominique Jeulin,et al.  Stochastic watershed segmentation , 2007, ISMM.

[15]  Jesús Angulo,et al.  Random Germs and Stochastic Watershed for Unsupervised Multispectral Image Segmentation , 2007, KES.

[16]  Pierre Soille,et al.  Morphological partitioning of multispectral images , 1996, J. Electronic Imaging.

[17]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[18]  Guy Flouzat,et al.  Spatial and spectral segmentation of satellite remote sensing imagery using processing graphs by mathematical morphology , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[19]  Paul Scheunders,et al.  A multivalued image wavelet representation based on multiscale fundamental forms , 2002, IEEE Trans. Image Process..

[20]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Allan Hanbury,et al.  Morphological operators on the unit circle , 2001, IEEE Trans. Image Process..

[22]  Mireille Louys,et al.  Reduction and segmentation of hyperspectral data cubes , 2006 .

[23]  Fernand Meyer,et al.  An Overview of Morphological Segmentation , 2001, Int. J. Pattern Recognit. Artif. Intell..

[24]  Jean Paul Frédéric Serra,et al.  A Lattice Approach to Image Segmentation , 2005, Journal of Mathematical Imaging and Vision.

[25]  Serge Beucher,et al.  The Morphological Approach to Segmentation: The Watershed Transformation , 2018, Mathematical Morphology in Image Processing.

[26]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[27]  Rick Archibald,et al.  Feature Selection and Classification of Hyperspectral Images With Support Vector Machines , 2007, IEEE Geoscience and Remote Sensing Letters.

[28]  Guillaume Noyel Filtrage, réduction de dimension, classification et segmentation morphologique hyperspectrale , 2008 .

[29]  Kristel Michielsen,et al.  Morphological image analysis , 2000 .

[30]  Jon Atli Benediktsson,et al.  A new approach for the morphological segmentation of high-resolution satellite imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  Pierre Soille,et al.  Constrained connectivity for hierarchical image partitioning and simplification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Jesús Angulo,et al.  Classification-driven stochastic watershed. Application to multispectral segmentation , 2008, CGIV/MCS.

[33]  Sylvain Douté,et al.  WAVANGLET: An Efficient Supervised Classifier for Hyperspectral Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[35]  J. Anthony Gualtieri,et al.  Support vector machines for hyperspectral remote sensing classification , 1999, Other Conferences.

[36]  Jesús Angulo,et al.  Filtering, segmentation and region classification by hyperspectral mathematical morphology of DCE-MRI series for angiogenesis imaging , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.