A miniature low-power ultra-wideband low noise amplifier in 0.18 μm CMOS

A 0.18-μm CMOS low-noise amplifier (LNA) operating over the entire ultra-wideband (UWB) frequency range of 3.1–10.6 GHz, has been designed, fabricated, and tested. The UWB LNA achieves the measured power gain of 7.5 ± 2.5 dB, minimum input matching of −8 dB, noise figure from 3.9 to 6.3 dB, and IIP3 from −8 to −1.9 dBm, while consuming only 9 mW over 3–10 GHz. It occupies only 0.55 × 0.4 mm2 without RF and DC pads. The design uses only two on-chip inductors, one of which is such small that could be replaced by a bonding wire. The gain, noise figure, and matching of the amplifier are also analyzed. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE , 2011. © 2011 Wiley Periodicals, Inc.

[1]  David J. Allstot,et al.  Desensitized CMOS Low-Noise Amplifiers , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Bo Shi,et al.  A CMOS Receiver Front-End for 3.1-10.6 GHz Ultra-Wideband Radio , 2006, 2006 European Microwave Conference.

[3]  M.T. Reiha,et al.  A 1.2 V reactive-feedback 3.1-10.6 GHz ultrawideband low-noise amplifier in 0.13 /spl mu/m CMOS , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[4]  Shen-Iuan Liu,et al.  An Ultra-Wide-Band 0.4–10-GHz LNA in 0.18-$\mu$m CMOS , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[6]  Jaehoon Choi,et al.  Ultra-wideband low noise amplifier using a cascode feedback topology , 2006, Digest of Papers. 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[7]  Yang Lu,et al.  A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra-wide-band wireless receivers , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Shen-Iuan Liu,et al.  A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers , 2007, IEEE Journal of Solid-State Circuits.

[9]  J. Gil,et al.  Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier , 2005, IEEE Journal of Solid-State Circuits.

[10]  Kwyro Lee,et al.  A new simultaneous noise and input power matching technique for monolithic LNA's using cascode feedback , 1997 .

[11]  D. J. Allstot,et al.  A fully integrated 0.5-5.5 GHz CMOS distributed amplifier , 2000 .

[12]  A.P. Chandrakasan,et al.  A BiCMOS Ultra-Wideband 3.1–10.6-GHz Front-End , 2006, IEEE Journal of Solid-State Circuits.

[13]  M. L. Edwards,et al.  A new criterion for linear 2-port stability using a single geometrically derived parameter , 1992 .

[14]  Sang-Gug Lee,et al.  An ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB system , 2005 .

[15]  C. Nguyen,et al.  Low-power-consumption and high-gain CMOS distributed amplifiers using cascade of inductively coupled common-source gain cells for UWB systems , 2006, IEEE Transactions on Microwave Theory and Techniques.

[16]  S.S. Taylor,et al.  A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.