Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation

BACKGROUND The inference of genetic regulatory networks (GRNs) provides insight into the cellular responses to signals. A class of recurrent neural networks (RNNs) capturing the dynamics of GRN has been used as a basis for inferring small-scale GRNs from gene expression time series. The Bayesian framework facilitates incorporating the hypothesis of GRN into the model estimation to improve the accuracy of GRN inference. RESULTS We present new methods for inferring small-scale GRNs based on RNNs. The weights of wires of RNN represent the strengths of gene-to-gene regulatory interactions. We use a class of automatic relevance determination (ARD) priors to enforce the sparsity in the maximum a posteriori (MAP) estimates of wire weights of RNN. A particle swarm optimization (PSO) is integrated as an optimization engine into the MAP estimation process. Likely networks of genes generated based on estimated wire weights are combined using the majority rule to determine a final estimated GRN. As an alternative, a class of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math> -norm ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>q</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:math> ) priors is used for attaining the sparse MAP estimates of wire weights of RNN. We also infer the GRN using the maximum likelihood (ML) estimates of wire weights of RNN. The RNN-based GRN inference algorithms, ARD-RNN, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math> -RNN, and ML-RNN are tested on simulated and experimental E. coli and yeast time series containing 6-11 genes and 7-19 data points. Published GRN inference algorithms based on regressions and mutual information networks are performed on the benchmark datasets to compare performances. CONCLUSION ARD and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math> -norm priors are used for the estimation of wire weights of RNN. Results of GRN inference experiments show that ARD-RNN, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math> -RNN have similar best accuracies on the simulated time series. The ARD-RNN is more accurate than <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msub></mml:math> -RNN, ML-RNN, and mostly more accurate than the reference algorithms on the experimental time series. The effectiveness of ARD-RNN for inferring small-scale GRNs using gene expression time series of limited length is empirically verified.

[1]  M Wahde,et al.  Coarse-grained reverse engineering of genetic regulatory networks. , 2000, Bio Systems.

[2]  Robert Clarke,et al.  Reverse engineering module networks by PSO-RNN hybrid modeling , 2009, BMC Genomics.

[3]  Aurélien Mazurie,et al.  Gene networks inference using dynamic Bayesian networks , 2003, ECCB.

[4]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[5]  Dario Floreano,et al.  Combining Multiple Results of a Reverse‐Engineering Algorithm: Application to the DREAM Five‐Gene Network Challenge , 2009, Annals of the New York Academy of Sciences.

[6]  U. Alon,et al.  Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[8]  Q. Ouyang,et al.  The yeast cell-cycle network is robustly designed. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Gerhard Reinelt,et al.  Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling , 2009, BMC Bioinformatics.

[10]  J. Vohradský Neural Model of the Genetic Network* , 2001, The Journal of Biological Chemistry.

[11]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[12]  Jürgen Wolf,et al.  CASPAR: a hierarchical Bayesian approach to predict survival times in cancer from gene expression data , 2006, Bioinform..

[13]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[14]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[15]  Jung-Hsien Chiang,et al.  Modeling human cancer-related regulatory modules by GA-RNN hybrid algorithms , 2007, BMC Bioinformatics.

[16]  Michael Hecker,et al.  Gene regulatory network inference: Data integration in dynamic models - A review , 2009, Biosyst..

[17]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[18]  Hiroshi Tanaka,et al.  Hub-Centered Gene Network Reconstruction Using Automatic Relevance Determination , 2012, PloS one.

[19]  Jimmy Omony,et al.  Biological Network Inference: A Review of Methods and Assessment of Tools and Techniques , 2014 .

[20]  Christophe Ambroise,et al.  Statistical Applications in Genetics and Molecular Biology Weighted-LASSO for Structured Network Inference from Time Course Data , 2011 .

[21]  Ata Kabán Fractional Norm Regularization: Learning With Very Few Relevant Features , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Natalie Berestovsky,et al.  An Evaluation of Methods for Inferring Boolean Networks from Time-Series Data , 2013, PloS one.

[23]  D. Husmeier,et al.  Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge , 2007, Statistical applications in genetics and molecular biology.

[24]  B. Haibe-Kains,et al.  Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks , 2014, Front. Cell Dev. Biol..

[25]  Shuhei Kimura,et al.  Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm , 2005, Bioinform..

[26]  Adrian E. Raftery,et al.  Integrating external biological knowledge in the construction of regulatory networks from time-series expression data , 2012, BMC Systems Biology.