In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

Summary The interfacing of colloidal nanoparticles with mammalian cells is now well into its second decade. In this review our goal is to highlight the more generally accepted concepts that we have gleaned from nearly twenty years of research. While details of these complex interactions strongly depend, amongst others, upon the specific properties of the nanoparticles used, the cell type, and their environmental conditions, a number of fundamental principles exist, which are outlined in this review.

[1]  Yi Yang,et al.  Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. , 2013, ACS nano.

[2]  J. Weidner Drug delivery. , 2001, Drug discovery today.

[3]  María Vallet-Regí,et al.  The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles , 2010 .

[4]  Samantha L. Elliott,et al.  Catalytic Azide Reduction in Biological Environments , 2012, Chembiochem : a European journal of chemical biology.

[5]  Igor Nabiev,et al.  Probing cell-type-specific intracellular nanoscale barriers using size-tuned quantum dots. , 2009, Small.

[6]  T. Mayhew,et al.  A novel quantitative method for analyzing the distributions of nanoparticles between different tissue and intracellular compartments. , 2007, Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine.

[7]  Tim Liedl,et al.  On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. , 2004, Small.

[8]  Raimo Hartmann,et al.  Temperature: the "ignored" factor at the NanoBio interface. , 2013, ACS nano.

[9]  P. Saftig,et al.  Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function , 2009, Nature Reviews Molecular Cell Biology.

[10]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[11]  Juan B. Blanco-Canosa,et al.  Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. , 2011, ACS nano.

[12]  Lucía Gutiérrez,et al.  Biological applications of magnetic nanoparticles. , 2012, Chemical Society reviews.

[13]  L. Vroman,et al.  Effect of Adsorbed Proteins on the Wettability of Hydrophilic and Hydrophobic Solids , 1962, Nature.

[14]  B. Cohen,et al.  Rapid cytosolic delivery of luminescent nanocrystals in live cells with endosome-disrupting polymer colloids. , 2010, Nano letters.

[15]  S. Nitti,et al.  Exocytosis of peptide functionalized gold nanoparticles in endothelial cells. , 2012, Nanoscale.

[16]  M. Hande,et al.  Cytotoxicity and genotoxicity of silver nanoparticles in human cells. , 2009, ACS nano.

[17]  Marco P Monopoli,et al.  Biomolecular coronas provide the biological identity of nanosized materials. , 2012, Nature nanotechnology.

[18]  W. Parak,et al.  Getting Across the Plasma Membrane and Beyond: Intracellular Uses of Colloidal Semiconductor Nanocrystals , 2007, Journal of biomedicine & biotechnology.

[19]  Peter Wick,et al.  The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry , 2010, Journal of nanobiotechnology.

[20]  Raimo Hartmann,et al.  Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells. , 2013, ACS nano.

[21]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[22]  S. Schürch,et al.  Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. , 2006, Environmental science & technology.

[23]  G. Battaglia,et al.  Endocytosis at the nanoscale. , 2012, Chemical Society reviews.

[24]  Raimo Hartmann,et al.  Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge , 2012, Journal of Nanobiotechnology.

[25]  Jayanth Panyam,et al.  Rapid endo‐lysosomal escape of poly(DL‐lactide‐coglycolide) nanoparticles: implications for drug and gene delivery , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  Martin Oheim,et al.  Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[28]  Ralph Weissleder,et al.  Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. , 2010, Bioconjugate chemistry.

[29]  Francesco Stellacci,et al.  Effect of surface properties on nanoparticle-cell interactions. , 2010, Small.

[30]  Lang Tran,et al.  Safe handling of nanotechnology , 2006, Nature.

[31]  Jing Bai,et al.  Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. , 2012, ACS nano.

[32]  Warren C W Chan,et al.  Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. , 2007, Nano letters.

[33]  Xing-jie Liang,et al.  Metal ions in the context of nanoparticles toward biological applications , 2014 .

[34]  Igor L. Medintz,et al.  Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials. , 2013, ACS nano.

[35]  Albert Duschl,et al.  Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells , 2011, Particle and Fibre Toxicology.

[36]  Wolfgang Kreyling,et al.  Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells , 2005, Environmental health perspectives.

[37]  A. Alivisatos,et al.  Gel Electrophoresis of Gold-DNA Nanoconjugates , 2008, Journal of biomedicine & biotechnology.

[38]  Holger Moch,et al.  Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. , 2010, Toxicology letters.

[39]  Thomas Pons,et al.  Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. , 2008, Bioconjugate chemistry.

[40]  G. Sukhorukov,et al.  Photoactivated release of cargo from the cavity of polyelectrolyte capsules to the cytosol of cells. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[41]  V. Rasche,et al.  Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. , 2010, Biomaterials.

[42]  Darrell J Irvine,et al.  Drug delivery: One nanoparticle, one kill. , 2011, Nature materials.

[43]  B. Rothen‐Rutishauser,et al.  Gold nanorods: controlling their surface chemistry and complete detoxification by a two-step place exchange. , 2013, Angewandte Chemie.

[44]  Matthias Epple,et al.  TOXICITY OF SILVER NANOPARTICLES INCREASES DURING STORAGE BECAUSE OF SLOW DISSOLUTION UNDER RELEASE OF SILVER IONS , 2010 .

[45]  Wolfgang J Parak,et al.  NIR-light triggered delivery of macromolecules into the cytosol. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[46]  William G Telford,et al.  Dynamics and mechanisms of quantum dot nanoparticle cellular uptake , 2010, Journal of Nanobiotechnology.

[47]  V. Rotello,et al.  The role of surface functionality in determining nanoparticle cytotoxicity. , 2013, Accounts of chemical research.

[48]  Roberto Cingolani,et al.  Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. , 2010, ACS nano.

[49]  J. Chu,et al.  Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. , 2013, Small.

[50]  A. Riedinger,et al.  Ratiometric optical sensing of chloride ions with organic fluorophore-gold nanoparticle hybrids: a systematic study of design parameters and surface charge effects. , 2010, Small.

[51]  D. Simberg,et al.  Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems , 2011, Expert opinion on drug delivery.

[52]  Wrapping of a spherical colloid by a fluid membrane , 2002, cond-mat/0212421.

[53]  Tim Liedl,et al.  Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. , 2005, Nano letters.

[54]  Manuela Semmler-Behnke,et al.  Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. , 2010, Biomaterials.

[55]  Fengjuan Wang,et al.  The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[56]  G. Nienhaus,et al.  Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy , 2011, Beilstein journal of nanotechnology.

[57]  Igor L. Medintz,et al.  Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. , 2008, Bioconjugate chemistry.

[58]  J. Käs,et al.  A novel flow-cytometry-based assay for cellular uptake studies of polyelectrolyte microcapsules. , 2008, Small.

[59]  S. Haam,et al.  Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages , 2012, Nanotechnology.

[60]  Sara Linse,et al.  The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. , 2007, Advances in colloid and interface science.

[61]  Feng Zhang,et al.  Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding , 2010, Journal of The Royal Society Interface.

[62]  E T Ahrens,et al.  Receptor‐mediated endocytosis of iron‐oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging , 2003, Magnetic resonance in medicine.

[63]  Serena Mazzucchelli,et al.  Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. , 2012, Small.

[64]  D. Irvine,et al.  Freely Suspended Cellular “Backpacks” Lead to Cell Aggregate Self-Assembly , 2010, Biomacromolecules.

[65]  Zufang Huang,et al.  Electrical pulse – mediated enhanced delivery of silver nanoparticles into living suspension cells for surface enhanced Raman spectroscopy , 2012 .

[66]  W. Parak,et al.  One example on how colloidal nano- and microparticles could contribute to medicine. , 2009, Nanomedicine.

[67]  B. Grant,et al.  Pathways and mechanisms of endocytic recycling , 2009, Nature Reviews Molecular Cell Biology.

[68]  R. Murray,et al.  Gold nanoparticles: past, present, and future. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[69]  Wolfgang J Parak,et al.  Fluorescent-magnetic hybrid nanoparticles induce a dose-dependent increase in proinflammatory response in lung cells in vitro correlated with intracellular localization. , 2010, Small.

[70]  M. Wiemann,et al.  Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA) , 2013, Journal of Nanoparticle Research.

[71]  Igor L. Medintz,et al.  Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores. , 2013, Bioconjugate chemistry.

[72]  Nastassja A. Lewinski,et al.  Cytotoxicity of nanoparticles. , 2008, Small.

[73]  V. Puntes,et al.  Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation , 2013, Particle and Fibre Toxicology.

[74]  Duane E. Prasuhn,et al.  Site-specific cellular delivery of quantum dots with chemoselectively-assembled modular peptides. , 2013, Chemical communications.

[75]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[76]  Huw D. Summers,et al.  Quantification of Nanoparticle Dose and Vesicular Inheritance in Proliferating Cells , 2013, ACS nano.

[77]  Younan Xia,et al.  The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. , 2011, Nature nanotechnology.

[78]  Fang Huang,et al.  An unusual pathway for the membrane wrapping of rodlike nanoparticles and the orientation- and membrane wrapping-dependent nanoparticle interaction. , 2013, Nanoscale.

[79]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[80]  Mélanie Auffan,et al.  Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? , 2013, Nanoscale.

[81]  Wolfgang J Parak,et al.  Intracellular processing of proteins mediated by biodegradable polyelectrolyte capsules. , 2009, Nano letters.

[82]  W. Parak,et al.  pH-sensitive capsules as intracellular optical reporters for monitoring lysosomal pH changes upon stimulation. , 2012, Small.

[83]  Teófilo Rojo,et al.  The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. , 2013, Accounts of chemical research.

[84]  W. Gelbart,et al.  A statistical-thermodynamic model of viral budding. , 2004, Biophysical journal.

[85]  Wolfgang J Parak,et al.  Combined atomic force microscopy and optical microscopy measurements as a method to investigate particle uptake by cells. , 2006, Small.

[86]  Dieter Braun,et al.  Size determination of (bio)conjugated water-soluble colloidal nanoparticles : A comparison of different techniques , 2007 .

[87]  S M Moghimi,et al.  Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. , 2012, Annual review of pharmacology and toxicology.

[88]  S. Agarwal,et al.  Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. , 2013, Advanced drug delivery reviews.

[89]  G. Nienhaus,et al.  Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. , 2013, Nanoscale.

[90]  Robert L. Tanguay,et al.  Silver nanoparticle toxicity in the embryonic zebrafish is governed by particle dispersion and ionic environment , 2013, Nanotechnology.

[91]  Igor L. Medintz,et al.  Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[92]  H. Goesmann,et al.  Nanoparticulate functional materials. , 2010, Angewandte Chemie.

[93]  Kevin Braeckmans,et al.  Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. , 2013, ACS nano.

[94]  K. Landfester,et al.  Specific effects of surface amines on polystyrene nanoparticles in their interactions with mesenchymal stem cells. , 2010, Biomacromolecules.

[95]  Igor L. Medintz,et al.  Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. , 2013, Chemical reviews.

[96]  Stefan Tenzer,et al.  Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. , 2011, ACS nano.

[97]  P. Tauc,et al.  Wrapping nanocrystals with an amphiphilic polymer preloaded with fixed amounts of fluorophore generates FRET-based nanoprobes with a controlled donor/acceptor ratio. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[98]  Gerd Ulrich Nienhaus,et al.  New views on cellular uptake and trafficking of manufactured nanoparticles , 2013, Journal of The Royal Society Interface.

[99]  Wolfgang J Parak,et al.  Polymer-coated nanoparticles: a universal tool for biolabelling experiments. , 2011, Small.

[100]  Wolfgang J. Parak,et al.  Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups , 2006 .

[101]  R. Sperling,et al.  Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[102]  Stephan Barcikowski,et al.  Trends and Current Topics in the Field of Laser Ablation and Nanoparticle Generation in Liquids , 2011 .

[103]  A. Alexander-Katz,et al.  Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics. , 2013, ACS nano.

[104]  Kirsten Sandvig,et al.  Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies , 2011 .

[105]  Yu-qiang Ma,et al.  Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. , 2012, Biomaterials.

[106]  Vicki Stone,et al.  Toxicology of nanoparticles: A historical perspective , 2007 .

[107]  W. Peukert,et al.  Impact of the nanoparticle-protein corona on colloidal stability and protein structure. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[108]  W. Parak,et al.  Composite nanoparticles take aim at cancer. , 2008, ACS nano.

[109]  Robert Rallo,et al.  Differential expression of syndecan-1 mediates cationic nanoparticle toxicity in undifferentiated versus differentiated normal human bronchial epithelial cells. , 2011, ACS nano.

[110]  Saji George,et al.  Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. , 2009, ACS nano.

[111]  M. Colombo,et al.  Biotechnological approaches toward nanoparticle biofunctionalization. , 2014, Trends in biotechnology.

[112]  J. Gilman,et al.  Nanotechnology , 2001 .

[113]  Wolfgang J. Parak,et al.  Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. , 2009, ACS nano.

[114]  Christine M. Micheel,et al.  Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks , 2002 .

[115]  M. Nolan,et al.  INTERACTIONS BETWEEN THIOL MOLECULAR LINKERS AND THE AU13 NANOPARTICLE , 2002 .

[116]  Feng Zhang,et al.  Excitation dynamics in polymer-coated semiconductor quantum dots with integrated dye molecules: The role of reabsorption , 2009 .

[117]  Christian Mühlfeld,et al.  Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. , 2010, Small.

[118]  Duane E. Prasuhn,et al.  The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. , 2011, Bioconjugate chemistry.

[119]  Amber L. Doiron,et al.  Endothelial nanoparticle binding kinetics are matrix and size dependent , 2011, Biotechnology and bioengineering.

[120]  Mathias Brust,et al.  Uptake and intracellular fate of surface-modified gold nanoparticles. , 2008, ACS nano.

[121]  Bengt Fadeel,et al.  Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. , 2013, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[122]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[123]  G. Ulrich Nienhaus,et al.  Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. , 2014, ACS nano.

[124]  J. Montenegro,et al.  The Cellular Interactions of PEGylated Gold Nanoparticles: Effect of PEGylation on Cellular Uptake and Cytotoxicity , 2014 .

[125]  Werner Österle,et al.  On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system. , 2013, Colloids and surfaces. B, Biointerfaces.

[126]  Yanbin Fan,et al.  The intranuclear release of a potential anticancer drug from small nanoparticles that are derived from intracellular dissociation of large nanoparticles. , 2012, Biomaterials.

[127]  Wolfgang J. Parak,et al.  The Toxicity of Silver Nanoparticles Depends on Their Uptake by Cells and Thus on Their Surface Chemistry , 2013 .

[128]  Manuela Semmler-Behnke,et al.  Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. , 2014, ACS nano.

[129]  G. Sukhorukov,et al.  On the mechanical stability of polymeric microcontainers functionalized with nanoparticles , 2009 .

[130]  R. Misra,et al.  Biomaterials , 2008 .

[131]  Martin J. D. Clift,et al.  Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative , 2010, Archives of Toxicology.

[132]  Serena Mazzucchelli,et al.  Delivering Colloidal Nanoparticles to Mammalian Cells: A Nano–Bio Interface Perspective , 2014, Advanced healthcare materials.

[133]  C. Mirkin,et al.  A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. , 2000, Analytical chemistry.

[134]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[135]  J. Gearhart,et al.  In vitro toxicity of nanoparticles in BRL 3A rat liver cells. , 2005, Toxicology in vitro : an international journal published in association with BIBRA.

[136]  Marco Zanella,et al.  Biological applications of gold nanoparticles. , 2008, Chemical Society reviews.

[137]  Paul Rees,et al.  Statistical analysis of nanoparticle dosing in a dynamic cellular system. , 2011, Nature nanotechnology.

[138]  Keith Guy,et al.  The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. , 2008, Toxicology and applied pharmacology.

[139]  I. Medintz Universal tools for biomolecular attachment to surfaces , 2006, Nature materials.

[140]  S. Wereley,et al.  Soft Matter , 2014 .

[141]  W. Heideman,et al.  TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations. , 2013, Environmental science & technology.

[142]  Andrzej S Pitek,et al.  Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. , 2012, ACS nano.

[143]  Igor L. Medintz,et al.  Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. , 2011, Analytical chemistry.

[144]  M. Morales,et al.  Relaxation times of colloidal iron platinum in polymer matrixes , 2009 .

[145]  Stefan Tenzer,et al.  Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. , 2013, Nature nanotechnology.

[146]  J. Pounds,et al.  Syndecan-1 mediates the coupling of positively charged submicrometer amorphous silica particles with actin filaments across the alveolar epithelial cell membrane. , 2009, Toxicology and applied pharmacology.

[147]  Andrew McCaskie,et al.  Nanomedicine , 2005, BMJ.

[148]  René Streubel,et al.  Size control of laser-fabricated surfactant-free gold nanoparticles with highly diluted electrolytes and their subsequent bioconjugation. , 2013, Physical chemistry chemical physics : PCCP.

[149]  O. Urakawa,et al.  Small - , 2007 .

[150]  Kai Yang,et al.  Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. , 2012, Biomaterials.

[151]  K. Braeckmans,et al.  Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. , 2012, Advanced drug delivery reviews.

[152]  D. Irvine,et al.  In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. , 2011, Molecular pharmaceutics.

[153]  K. Landfester,et al.  Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells. , 2011, Nanoscale.

[154]  C. Ludwig,et al.  Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach--a comparison to transmission electron microscopy and batch dynamic light scattering. , 2012, Analytical chemistry.

[155]  Subra Suresh,et al.  Size‐Dependent Endocytosis of Nanoparticles , 2009, Advanced materials.

[156]  G. Lowry,et al.  Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. , 2009, Nature nanotechnology.

[157]  Thomas Kuhlbusch,et al.  Particle and Fibre Toxicology BioMed Central Review The potential risks of nanomaterials: a review carried out for ECETOC , 2006 .

[158]  J. Turkson,et al.  An activatable multimodal/multifunctional nanoprobe for direct imaging of intracellular drug delivery. , 2012, Biomaterials.

[159]  Peter Gehr,et al.  Nanoparticle-cell membrane interactions , 2009 .

[160]  W. Liu,et al.  Degradation or excretion of quantum dots in mouse embryonic stem cells , 2010, BMC biotechnology.

[161]  Wolfgang J Parak,et al.  A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. , 2009, Nature nanotechnology.

[162]  H. Karlsson,et al.  Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. , 2008, Chemical research in toxicology.

[163]  Stephan Barcikowski,et al.  Transfer-Matrix Method for Efficient Ablation by Pulsed Laser Ablation and Nanoparticle Generation in Liquids , 2011 .

[164]  Wolfgang J. Parak,et al.  Protein corona formation around nanoparticles – from the past to the future , 2014 .

[165]  W. Parak Complex Colloidal Assembly , 2011, Science.

[166]  Luis M Liz-Marzán,et al.  Physicochemical properties of protein-coated gold nanoparticles in biological fluids and cells before and after proteolytic digestion. , 2013, Angewandte Chemie.

[167]  B. Rothen‐Rutishauser,et al.  Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. , 2011, Immunobiology.

[168]  D. Vanhecke,et al.  Quantification of gold nanoparticle cell uptake under controlled biological conditions and adequate resolution. , 2014, Nanomedicine.

[169]  Warren C W Chan,et al.  The effect of nanoparticle size, shape, and surface chemistry on biological systems. , 2012, Annual review of biomedical engineering.

[170]  Wolfgang J. Parak,et al.  Uptake of Colloidal Polyelectrolyte‐Coated Particles and Polyelectrolyte Multilayer Capsules by Living Cells , 2008 .

[171]  A. Marcus,et al.  Imaging and tracking of tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding. , 2007, Journal of the American Chemical Society.