A Granularity-Based Intelligent Tutoring System for Zooarchaeology

This paper presents a tutoring system which uses three different granularities for helping students to classify animals from bone fragments in zooarchaeology. The 3406 bone remains, which have 64 attributes, were obtained from the excavation of the Middle Palaeolithic site of El Salt (Alicante, Spain). The coarse granularity performs a five-class prediction, the medium a twelve-class prediction, and the fine a fifteen-class prediction. In the coarse granularity, the results show that the first 10 most relevant attributes for classification are width, bone, thickness, length, bone fragment, anatomical group, long bone circumference, X, Y, and Z. Based on those results, a user-friendly interface of the tutor has been built in order to train archaeology students to classify new remains using the coarse granularity. A pilot has been performed in the 2019 excavation season in Abric del Pastor (Alicante, Spain), where the automatic tutoring system was used by students to classify 51 new remains. The pilot experience demonstrated the usefulness of the tutoring system both for students when facing their first classification activities and also for seniors since the tutoring system gives them valuable clues for helping in difficult classification problems.

[1]  Robert J. Blumenschine,et al.  A Quantitative Diagnosis of Notches Made by Hammerstone Percussion and Carnivore Gnawing on Bovid Long Bones , 1994, American Antiquity.

[2]  Nicolás Morales,et al.  Mining theory-based patterns from Big data: Identifying self-regulated learning strategies in Massive Open Online Courses , 2018, Comput. Hum. Behav..

[3]  L. Binford Bones: Ancient Men and Modern Myths , 1981 .

[4]  Pilar Rodríguez Marín,et al.  Computer-assisted assessment with item classification for programming skills , 2013, TEEM '13.

[5]  H. Uerpmann,et al.  Animal bone finds and economic archaeology: a critical study of 'osteo-archaeological' method. , 1973, World archaeology.

[6]  S. Bell,et al.  Artificial neural networks as a tool for archaeological data analysis , 1998 .

[7]  Arthur C. Graesser,et al.  AutoTutor: an intelligent tutoring system with mixed-initiative dialogue , 2005, IEEE Transactions on Education.

[8]  Paul Ginns,et al.  A short questionnaire to evaluate the effectiveness of tutors in PBL: validity and reliability , 2005, Medical teacher.

[9]  Juan A. Barceló Visual Analysis in Archaeology. An Artificial Intelligence Approach , 2010 .

[10]  P. Andrews,et al.  Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification , 2016 .

[11]  J. Y. S. D. L. Terreros Tafonomía aplicada a zooarqueología , 2006 .

[12]  Cristo M. Hernández,et al.  Macrobotanical evidence (wood charcoal and seeds) from the Middle Palaeolithic site of El Salt, Eastern Iberia: Palaeoenvironmental data and plant resources catchment areas , 2018, Journal of Archaeological Science: Reports.

[13]  Cristina Real Margalef Aproximación metodológica y nuevos datos sobre los conjuntos arqueozoológicos del Magdaleniense superior de la Cova de les Cendres , 2012 .

[14]  Ton de Jong,et al.  Using Co-Lab to build System Dynamics models: Students' actions and on-line tutorial advice , 2009, Comput. Educ..

[15]  Pilar Rodríguez Marín,et al.  Adaptive Model for Computer-Assisted Assessment in Programming Skills , 2014, ArXiv.

[16]  P. Shipman,et al.  Cutmark Mimics on Modern and Fossil Bovid Bones , 1984, Current Anthropology.

[17]  H. Bunn Patterns of skeletal representation and hominid subsistence activities at Olduvai Gorge, Tanzania, and Koobi Fora, Kenya , 1986 .

[18]  Vincent Aleven,et al.  Educational Game and Intelligent Tutoring System , 2017, ACM Trans. Comput. Hum. Interact..

[19]  Laia Subirats,et al.  Intelligent Tutoring System in Archaeology , 2019 .

[20]  Carmelo Ardito,et al.  Re-experiencing History in Archaeological Parks by Playing a Mobile Augmented Reality Game , 2007, OTM Workshops.

[21]  Paola Villa,et al.  Breakage patterns of human long bones , 1991 .

[22]  Scotty D. Craig,et al.  Integrating Affect Sensors in an Intelligent Tutoring System , 2004 .

[23]  Deepti Mehrotra,et al.  An ensemble approach in converging contents of LMS and KMS , 2017, Education and Information Technologies.

[24]  J. Yravedra,et al.  Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis , 2009 .

[25]  Javier Atienza Fuente El complejo termal monumental de la ciudad romana de Valeria: propuesta de reconstrucción virtual de sus ambientes fríos a la luz de los hallazgos arqueológicos. , 2019, Virtual Archaeology Review.

[26]  Clive Orton,et al.  Mathematics in archaeology , 1985 .

[27]  Pat Shipman,et al.  Life History of a Fossil: An Introduction to Taphonomy and Paleoecology , 1981 .

[28]  Juan Barceló,et al.  Computational Intelligence in Archaeology , 2008 .

[29]  Field Cady,et al.  The Data Science Handbook , 2017 .

[30]  Ryan Shaun Joazeiro de Baker,et al.  Adapting to When Students Game an Intelligent Tutoring System , 2006, Intelligent Tutoring Systems.

[31]  L. J. Palomo,et al.  ATLAS Y LIBRO ROJO DE LOS MAMÍFEROS TERRESTRES , 2007 .

[32]  P. Shipman,et al.  Early hominid hunting, butchering, and carcass-processing behaviors: Approaches to the fossil record , 1983 .

[33]  M. Sancho Tafonomía y prehistoria: métodos y procedimientos de investigación , 1992 .

[34]  Jorge Machado,et al.  Temporal frameworks to approach human behavior concealed in Middle Palaeolithic palimpsests: A high-resolution example from El Salt Stratigraphic Unit X (Alicante, Spain) , 2016 .

[35]  Mike Baxter,et al.  A REVIEW OF SUPERVISED AND UNSUPERVISED PATTERN RECOGNITION IN ARCHAEOMETRY , 2006 .

[36]  Luisa M. Regueras,et al.  Integration of an intelligent tutoring system in a course of computer network design , 2016, Educational Technology Research and Development.