GRADIENT BASED CRITERIA FOR SEQUENTIAL DESIGN

Computer simulation experiments are commonly used as an inexpensive alternative to real-world experiments to form a metamodel that approximates the input-output relationship of the real-world experiment. While a user may want to understand the entire response surface, they may also want to focus on interesting regions of the design space, such as where the gradient is large. In this paper we present an algorithm that adaptively runs a simulation experiment that focuses on finding areas of the response surface with a large gradient while also gathering an understanding of the entire surface. We consider the scenario where small batches of points can be run simultaneously, such as with multi-core processors.