Almost-Everywhere Complexity Hierarchies for Nondeterministic Time

Abstract We present an almost-everywhere complexity hierarchy for nondeterministic time, and show that it is essentially the best result of this sort that can be proved using relativizable proof techniques.

[1]  Stanislav Zák A Turing machine space hierarchy , 1979, Kybernetika.

[2]  Carsten Lund,et al.  Algebraic methods for interactive proof systems , 1992, JACM.

[3]  Joel I. Seiferas,et al.  Limitations on Separating Nondeterministic Complexity Classes , 1981, SIAM J. Comput..

[4]  Lance Fortnow,et al.  Probabilistic computation and linear time , 1989, STOC '89.

[5]  Eric Allender,et al.  A Note on the Almost-Everywhere Hierarchy for Nondeterministic Time , 1990, STACS.

[6]  Richard Edwin Stearns,et al.  Two-Tape Simulation of Multitape Turing Machines , 1966, JACM.

[7]  Carl H. Smith,et al.  A note on arbitrarily complex recursive functions , 1988, Notre Dame J. Formal Log..

[8]  Joel I. Seiferas,et al.  A Note on Almost-Everywhere-Complex Sets and Separating Deterministic-Time-Complexity Classes , 1991, Inf. Comput..

[9]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[10]  Martin Fürer Data Structures for Distributed Counting , 1984, J. Comput. Syst. Sci..

[11]  Adi Shamir,et al.  IP = PSPACE , 1992, JACM.

[12]  Stanislav Zák,et al.  A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..

[13]  Patrick C. Fischer,et al.  Translational methods and computational complexity , 1965, SWCT.

[14]  Gerhard Buntrock Logarithmisch platzbeschränkte Simulationen , 1989 .

[15]  Paul Young,et al.  An introduction to the general theory of algorithms , 1978 .

[16]  Marek Karpinski,et al.  Randomness, Provability, and the Seperation of Monte Carlo Time and Space , 1987, Computation Theory and Logic.

[17]  Eric Allender,et al.  Oracles versus Proof Techniques that Do Not Relativize , 1990, SIGAL International Symposium on Algorithms.

[18]  John G. Geske,et al.  Almost-Everywhere Complexity, Bi-Immunity and Nondeterministic Space , 1991, ICCI.

[19]  Alan L. Selman,et al.  A Hierarchy Theorem for Almost Everywhere Complex Sets With Application to Polynomial Complexity Degrees , 1987, Symposium on Theoretical Aspects of Computer Science.

[20]  Carsten Lund,et al.  Nondeterministic exponential time has two-prover interactive protocols , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[21]  Stephen A. Cook,et al.  A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..

[22]  Stephen A. Cook,et al.  Time-bounded random access machines , 1972, J. Comput. Syst. Sci..

[23]  Sheila A. Greibach,et al.  Time- and Tape-Bounded Turing Acceptors and AFLs , 1970, J. Comput. Syst. Sci..

[24]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[25]  Timothy J. Long Strong Nondeterministic Polynomial-Time Reducibilities , 1982, Theor. Comput. Sci..

[26]  Ming Li Lower bounds in Computational Complexity , 1985 .