Almost-Everywhere Complexity Hierarchies for Nondeterministic Time
暂无分享,去创建一个
Eric Allender | Richard Beigel | Ulrich Hertrampf | Steven Homer | E. Allender | R. Beigel | S. Homer | U. Hertrampf
[1] Stanislav Zák. A Turing machine space hierarchy , 1979, Kybernetika.
[2] Carsten Lund,et al. Algebraic methods for interactive proof systems , 1992, JACM.
[3] Joel I. Seiferas,et al. Limitations on Separating Nondeterministic Complexity Classes , 1981, SIAM J. Comput..
[4] Lance Fortnow,et al. Probabilistic computation and linear time , 1989, STOC '89.
[5] Eric Allender,et al. A Note on the Almost-Everywhere Hierarchy for Nondeterministic Time , 1990, STACS.
[6] Richard Edwin Stearns,et al. Two-Tape Simulation of Multitape Turing Machines , 1966, JACM.
[7] Carl H. Smith,et al. A note on arbitrarily complex recursive functions , 1988, Notre Dame J. Formal Log..
[8] Joel I. Seiferas,et al. A Note on Almost-Everywhere-Complex Sets and Separating Deterministic-Time-Complexity Classes , 1991, Inf. Comput..
[9] Michael J. Fischer,et al. Separating Nondeterministic Time Complexity Classes , 1978, JACM.
[10] Martin Fürer. Data Structures for Distributed Counting , 1984, J. Comput. Syst. Sci..
[11] Adi Shamir,et al. IP = PSPACE , 1992, JACM.
[12] Stanislav Zák,et al. A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..
[13] Patrick C. Fischer,et al. Translational methods and computational complexity , 1965, SWCT.
[14] Gerhard Buntrock. Logarithmisch platzbeschränkte Simulationen , 1989 .
[15] Paul Young,et al. An introduction to the general theory of algorithms , 1978 .
[16] Marek Karpinski,et al. Randomness, Provability, and the Seperation of Monte Carlo Time and Space , 1987, Computation Theory and Logic.
[17] Eric Allender,et al. Oracles versus Proof Techniques that Do Not Relativize , 1990, SIGAL International Symposium on Algorithms.
[18] John G. Geske,et al. Almost-Everywhere Complexity, Bi-Immunity and Nondeterministic Space , 1991, ICCI.
[19] Alan L. Selman,et al. A Hierarchy Theorem for Almost Everywhere Complex Sets With Application to Polynomial Complexity Degrees , 1987, Symposium on Theoretical Aspects of Computer Science.
[20] Carsten Lund,et al. Nondeterministic exponential time has two-prover interactive protocols , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[21] Stephen A. Cook,et al. A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..
[22] Stephen A. Cook,et al. Time-bounded random access machines , 1972, J. Comput. Syst. Sci..
[23] Sheila A. Greibach,et al. Time- and Tape-Bounded Turing Acceptors and AFLs , 1970, J. Comput. Syst. Sci..
[24] J. Hartmanis,et al. On the Computational Complexity of Algorithms , 1965 .
[25] Timothy J. Long. Strong Nondeterministic Polynomial-Time Reducibilities , 1982, Theor. Comput. Sci..
[26] Ming Li. Lower bounds in Computational Complexity , 1985 .