Identification of the payload inertial parameters of industrial manipulators

In this paper we present four methods for the identification of the inertial parameters of the load of a manipulator. The knowledge of the values of these parameters can be used to tune the control law parameters in order to improve the dynamic accuracy of the robot. They can also be exploited to verify the load transported by the robot. The methods presented have been validated using Staubli RX 90 robot. The experimentation has been carried out using data collected from the industrial control system (version CS8) of the manufacturer. This version allows to have access to joint positions, velocities and torques. The methods presented are based on solving linear system of equations using weighted least squares solution.

[1]  Maxime Gautier,et al.  Numerical calculation of the base inertial parameters of robots , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[2]  Maxime Gautier Dynamic identification of robots with power model , 1997, Proceedings of International Conference on Robotics and Automation.

[3]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[4]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[5]  Wisama Khalil,et al.  A new geometric notation for open and closed-loop robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[6]  Takeo Kanade,et al.  Parameter identification of robot dynamics , 1985, 1985 24th IEEE Conference on Decision and Control.

[7]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[8]  Krzysztof Kozłowski,et al.  Modelling and Identification in Robotics , 1998 .

[9]  C. C. Wit,et al.  Parameters Identification of Robots Manipulators via Sequential Hybrid Estimation Algorithms , 1990 .

[10]  Wisama Khalil,et al.  Identification of the dynamic parameters of a closed loop robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[11]  Maxime Gautier,et al.  Identification of robots inertial parameters by means of spectrum analysis , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[12]  Guangjun Liu,et al.  A base force/torque sensor approach to robot manipulator inertial parameter estimation , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[13]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[14]  Haruhisa Kawasaki,et al.  Terminal-link parameter estimation of robotic manipulators , 1988, IEEE J. Robotics Autom..

[15]  M. Gautier A comparison of filtered models for dynamic identification of robots , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[16]  H. Kawasaki,et al.  Terminal-Link Parameter Estimation and Trajectory Control of Robotic Manipulators , 1985 .

[17]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[18]  Fouad Bennis,et al.  Symbolic Calculation of the Base Inertial Parameters of Closed-Loop Robots , 1995, Int. J. Robotics Res..

[19]  In-Joong Ha,et al.  An efficient estimation algorithm for the model parameters of robotic manipulators , 1989, IEEE Trans. Robotics Autom..

[20]  Friedrich M. Wahl,et al.  Identification of robot dynamics with differential and integral models: a comparison , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[21]  Georges Bastin,et al.  Identification of the barycentric parameters of robot manipulators from external measurements , 1992, Autom..

[22]  Maxime Gautier Contribution a la modelisation et a l'identification des robots , 1990 .

[23]  Koichi Osuka,et al.  Base parameters of manipulator dynamic models , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.