Game-Theoretical Semantics

Publisher Summary The leading ideas of game-theoretical semantics (GTS) can be seen best from a special case of the semantics of quantifiers. In using quantifiers and in theorizing about them, it is hard not to use game-laden terms. This chapter focuses on the game-theoretical semantics (GTS). The game-theoretical interpretation for the ordinary first-order languages is extended to cover also the sentences of the new language. The game rules for the new language is the same as the old ones. The only essential difference between the new and the old games is, thus, that the former are the games of imperfect information. The resulting logic is called “independence friendly (IF) first-order logic” and the languages associated with it are IF first-order languages. GTS is only one of the possible semantical treatments of first-order logic.

[1]  Wilbur John Walkoe,et al.  Finite Partially-Ordered Quantification , 1970, J. Symb. Log..

[2]  R. Hilpinen On C. S. Peirce's Theory of the Proposition: Peirce as a Precursor of Game-Theoretical Semantics , 1982 .

[3]  Veikko Rantala,et al.  Urn models: A new kind of non-standard model for first-order logic , 1975, J. Philos. Log..

[4]  Gabriel Sandu,et al.  On the logic of informational independence and its applications , 1993, J. Philos. Log..

[5]  K. Jon Barwise,et al.  On branching quantifiers in English , 1979, J. Philos. Log..

[6]  Andreas Blass,et al.  A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..

[7]  Erik Stenius,et al.  Comments on Jaakko Hintikka's paper “Quantifiers vs. Quantification theory”* , 1976 .

[8]  Jaakko Hintikka,et al.  Impossible possible worlds vindicated , 1975, J. Philos. Log..

[9]  H. Enderton Finite Partially-Ordered Quantifiers , 1970 .

[10]  Jeroen Groenendijk,et al.  Dynamic predicate logic , 1991 .

[11]  Michael Hand Semantical games, verification procedures, and wellformedness , 1987 .

[12]  Jon Barwise,et al.  Some applications of Henkin quantifiers , 1976 .

[13]  Robert L. Vaught,et al.  Sentences true in all constructive models , 1960, Journal of Symbolic Logic.

[14]  Jaakko Hintikka,et al.  Identity, variables, and impredicative definitions , 1956, Journal of Symbolic Logic.

[15]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[16]  Kuno Lorenz,et al.  Dialogspiele als Semantische Grundlage von Logikkalkülen , 1968 .

[17]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[18]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[19]  Jaakko Hintikka,et al.  The Role of Logic in Argumentation , 1989 .

[20]  Alistair H. Lachlan,et al.  On the semantics of the Henkin quantifier , 1979, Journal of Symbolic Logic.

[21]  Gabriel Sandu,et al.  Partially Ordered Connectives , 1992, Math. Log. Q..

[22]  Radha Jagadeesan,et al.  Games and full completeness for multiplicative linear logic , 1992, Journal of Symbolic Logic.

[23]  Jaakko Hintikka Temporal discourse and semantical games , 1982 .

[24]  George Boolos,et al.  To Be Is to Be a Value of a Variable (or to Be Some Values of Some Variables) , 1984 .