Enhanced high-rate discharge properties of La11.3Mg6.0Sm7.4Ni61.0Co7.2Al7.1 with added graphene synthesized by plasma milling

Abstract In order to improve the high-rate discharge properties of La 11.3 Mg 6.0 Sm 7.4 Ni 61.0 Co 7.2 Al 7.1 (AB 3.0 ) alloy electrodes, the effects of plasma milling (PM) and graphene addition on their electrochemical properties and kinetics have been investigated. It was found that the discharge capacity of AB 3.0 at a high discharge current density was significantly improved after the addition of graphene followed by PM for only 10 min. Moreover, the high-rate dischargeability (HRD) and the exchange current density I 0 of the alloy electrodes were also increased. The PM technique exhibits obvious advantages for improving the high-rate discharge properties of hydrogen-storage alloys.

[1]  Lin Hu,et al.  Effect of rare earth elements on electrochemical properties of La-Mg-Ni-based hydrogen storage alloys , 2009 .

[2]  L. Ouyang,et al.  Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide , 2009 .

[3]  H. Inoue,et al.  Effects of substitution with foreign metals on the crystallographic, thermodynamic and electrochemical properties of AB5-type hydrogen storage alloys , 1996 .

[4]  Yang-huan Zhang,et al.  Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg20−xLaxNi10 (x = 0–6) alloys , 2009 .

[5]  K. Kuruma,et al.  Electrochemical Hydrogen Charge Characteristics of Metal Hydride Electrodes , 1992 .

[6]  Yuan Li,et al.  Effect of CuO addition on electrochemical properties of AB3-type alloy electrodes for nickel/metal hydride batteries , 2010 .

[7]  H. Takenouti,et al.  Electrochemical study of LaNi3.55Mn0.4Al0.3Fe0.75 as negative electrode in alkaline secondary batteries , 2012 .

[8]  K. Sun,et al.  Effect of Co content on the structure and electrochemical properties of La1.5Mg0.5Ni7−xCox (x = 0, 1.2, 1.8) hydrogen storage alloys , 2006 .

[9]  T. Sakai,et al.  Structural investigation and hydrogen capacity of YMg2Ni9 and (Y0.5Ca0.5)(MgCa)Ni9: new phases in the AB2C9 system isostructural with LaMg2Ni9 , 1999 .

[10]  Lai-Peng Ma,et al.  Improving hydrogen sorption kinetics of MgH2 by mechanical milling with TiF3 , 2007 .

[11]  H. A. Peretti,et al.  Electrochemical characterization of AB2 alloys used for negative electrodes in Ni/MH batteries , 2008 .

[12]  Lixian Sun,et al.  Electrochemical hydrogen storage properties of La0.7Mg0.3Ni3.5-Ti0.17Zr0.08V0.35Cr0.1Ni0.3 composites , 2008 .

[13]  Liqun Ma,et al.  Effect of particle size on the electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy , 2009 .

[14]  Y. Chai,et al.  Effect of annealed treatment on microstructure and cyclic stability for La–Mg–Ni hydrogen storage alloys , 2012 .

[15]  M. Moussa,et al.  Effect of substitution of Mm for La on the electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.75 compound , 2005 .

[16]  Shu Hui Liu,et al.  Effect of AB2-based alloy addition on structure and electrochemical properties of La0.5Pr0.2Zr0.1Mg0.2Ni2.75Co0.45Fe0.1Al0.2 hydrogen storage alloy , 2013 .

[17]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[18]  H. Pan,et al.  Influences of Co substitution and annealing treatment on the structure and electrochemical propertie , 2007 .

[19]  Young-Su Lee,et al.  Mitigation of degradation in the dehydrogenation behavior of air-exposed MgH2 catalyzed with NbF5 , 2013 .

[20]  Xiao-ping Dong,et al.  Effect of cobalt content on electrochemical performance of La-Mg-Ni system (Ce2Ni7-type) electrode alloys , 2008 .

[21]  J. Tu,et al.  High-rate discharge properties of nickel hydroxide/carbon composite as positive electrode for Ni/MH batteries , 2008 .

[22]  Z. Wen,et al.  Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives , 2005 .

[23]  J. Tu,et al.  Effects of carbon nanotubes on the high-rate discharge properties of nickel/metal hydride batteries , 2004 .

[24]  Sun-Ju Song,et al.  Electrochemical hydrogen charge and discharge properties of La0.1Sr0.9Co1−yFeyO3−δ (y = 0, 0.2, 1) electrodes in alkaline electrolyte solution , 2013 .

[25]  C. R. Martin,et al.  Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide , 1999 .

[26]  Phl Peter Notten,et al.  Double-Phase Hydride Forming Compounds: A New Class of Highly Electrocatalytic Materials , 1991 .

[27]  M. Zeng,et al.  A new method of synthesizing ultrafine vanadium carbide by dielectric barrier discharge plasma assisted milling , 2012 .

[28]  Xiongbang Wei,et al.  Effect of praseodymium substitution for lanthanum on structure and properties of La0.65–xPrxNd0.12Mg0.23Ni3.4Al0.1(x=0.00–0.20) hydrogen storage alloys , 2009 .

[29]  Lin Hu,et al.  The effect of Nd content on the electrochemical properties of low-Co La–Mg–Ni-based hydrogen storage alloys , 2008 .

[30]  Y. Cai,et al.  Electrochemical hydrogen storage characteristics of as-cast and annealed La0.8-xNdxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0-0.4) alloys , 2013 .

[31]  H. Ren,et al.  Structures and electrochemical hydrogen storage characteristics of La0.75−xPrxMg0.25Ni3.2Co0.2Al0.1 (x = 0–0.4) alloys prepared by melt spinning , 2009 .

[32]  T. Sakai,et al.  Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers , 1997 .

[33]  H. Pan The structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x(x=3.0–5.0) hydrogen storage alloys , 2003 .

[34]  H. Pan,et al.  Effect of the substitution of PR for LA on the microstructure and electrochemical properties of La0.7-xPrxMg0.3Ni2.45Co0.75Mn0.1Al0.2(x=0.0–0.3) hydrogen storage electrode alloys , 2007 .

[35]  Xiao-ping Dong,et al.  Effect of La/Mg on the structure and electrochemical performance of La–Mg–Ni system hydrogen storage electrode alloy , 2008 .

[36]  Itaru Honma,et al.  Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. , 2009, Nano letters.

[37]  Yongfeng Liu,et al.  Advanced hydrogen storage alloys for Ni/MH rechargeable batteries , 2011 .

[38]  Charles R. Martin,et al.  Rate Capabilities of Nanostructured LiMn2 O 4 Electrodes in Aqueous Electrolyte , 2000 .

[39]  Q. Tian,et al.  Effect of ball-milling time on the electrochemical properties of La-Mg-Ni-based hydrogen storage composite alloys , 2007 .

[40]  M. Fetcenko,et al.  Annealing effects on structural and electrochemical properties of (LaPrNdZr)0.83Mg0.17(NiCoAlMn)3.3 alloy , 2009 .

[41]  Y. Cai,et al.  Effects of substituting Ni with Cu on the microstructures and electrochemical characteristics of the as-cast and quenchedLa0.7Mg0.3Ni2.55-xCo0.45Cux(x=0–0.4)electrode alloys , 2007 .

[42]  Lai-Peng Ma,et al.  Preliminary investigation on the catalytic mechanism of TiF_3 additive in MgH_2–TiF_3 H-storage system , 2007 .

[43]  C. Khaldi,et al.  Effect of partial substitution of Co with Fe on the properties of LaNi3.55Mn0.4Al0.3Co0.75−xFex (x=0, 0.15, 0.55) alloys electrodes , 2003 .

[44]  E. Yoo,et al.  Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. , 2009, Nano letters.

[45]  Jai-Young Lee,et al.  The activation mechanism of Zr-based alloy electrodes , 1995 .

[46]  Yi Liu,et al.  Influence of surface treatments on microstructure and electrochemical properties of La0.7Mg0.3Ni2.4Co0.6 hydrogen-storage alloy , 2008 .

[47]  Changchun Zhu,et al.  Effect of Al substitution for Co on the hydrogen storage characteristics of Ml0.8Mg0.2Ni3.2Co0.6−xAlx (x=0–0.6) alloys , 2006 .

[48]  T. Sakai,et al.  Electrochemical Impedance Spectra and Deterioration Mechanism of Metal Hydride Electrodes , 1992 .

[49]  Yong-chun Luo,et al.  La–Mg–Ni ternary hydrogen storage alloys with Ce2Ni7-type and Gd2Co7-type structure as negative electrodes for Ni/Mh batteries , 2007 .

[50]  Rui Li,et al.  Effect of the cerium content on the structural and electrochemical properties of the La0.7−xCexMg0.3Ni2.875Mn0.1Co0.525 (x=0–0.5) hydrogen storage alloys , 2004 .

[51]  C. Khaldi,et al.  Electrochemical study of cobalt-free AB5-type hydrogen storage alloys , 2004 .

[52]  T. Sakai,et al.  Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9 of the AB2C9 type structure , 2000 .

[53]  Lai-Peng Ma,et al.  Superior catalytic effect of TiF3 over TiCl3 in improving the hydrogen sorption kinetics of MgH2: Catalytic role of fluorine anion , 2009 .

[54]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.

[55]  C. Khaldi,et al.  Electrochemical properties of the LaNi3.55Mn0.4Al0.3Co0.4Fe0.35 hydrogen storage alloy , 2006 .

[56]  Mao-Sung Wu,et al.  Surface treatment for hydrogen storage alloy of nickel/metal hydride battery , 2000 .

[57]  H. Pan,et al.  The effect of Mn substitution for Ni on the structural and electrochemical properties of La0.7Mg0.3Ni2.55−xCo0.45Mnx hydrogen storage electrode alloys , 2004 .

[58]  Jeng‐Kuei Chang,et al.  Effects of Co, Mn contents on the electrochemical characteristics of the LaNi3.8(Co + Mn)0.96Al0.24 electrodes in potassium hydroxide electrolyte , 2002 .