Single-shot thermal energy mapping of semiconductor devices with the nanosecond resolution using holographic interferometry

A novel two-dimensional backside optical imaging method for thermal energy mapping inside semiconductor devices is presented. The method is based on holographic interferometry from the device backside and uses the thermo-optical effect. An image of the local thermal energy is obtained with 5-ns time resolution using a single stress pulse. The technique allows a unique recording of the internal device behavior. The method is demonstrated analyzing the nonrepetitive thermal and current flow dynamics in smart power electrostatic discharge (ESD) protection devices. A spreading of the current during the stress pulse is observed and explained by the effect of the negative temperature dependence of the impact ionization coefficient.

[1]  H. Ahmed,et al.  INFRARED ABSORPTION IN SILICON AT ELEVATED TEMPERATURES , 1996 .

[2]  A. Boccara,et al.  High resolution AC temperature field imaging , 1997 .

[3]  J. Kash,et al.  Picosecond hot electron light emission from submicron complementary metal–oxide–semiconductor circuits , 1997 .

[4]  Sergey Bychikhin,et al.  Quantitative internal thermal energy mapping of semiconductor devices under short current stress using backside laser interferometry , 2002 .

[5]  T. Kreis Holographic Interferometry: Principles and Methods , 1996 .

[6]  D. A. Fraser,et al.  The physics of semiconductor devices , 1986 .

[7]  C. Vest Holographic Interferometry , 1979 .

[8]  B. J. Baliga,et al.  Modern Power Devices , 1987 .

[9]  D. S. Campbell,et al.  Thermal failure in semiconductor devices , 1990 .

[10]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[11]  M. Stecher,et al.  Wide range control of the sustaining voltage of ESD protection elements realized in a smart power technology , 1999, Electrical Overstress/Electrostatic Discharge Symposium Proceedings. 1999 (IEEE Cat. No.99TH8396).

[12]  E. A. Amerasekera,et al.  ESD in silicon integrated circuits , 1995 .

[13]  G. Groos,et al.  Study of trigger instabilities in smart power technology ESD protection devices using a laser interferometric thermal mapping technique , 2001, 2001 Electrical Overstress/Electrostatic Discharge Symposium.

[14]  Kai Esmark Device simulation of ESD protection elements , 2001 .

[15]  Dionyz Pogany,et al.  Simulation and experimental study of temperature distribution during ESD stress in smart-power technology ESD protection structures , 2000, 2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059).

[16]  L. Goldberg,et al.  Interferometric near-field imaging technique for phase and refractive index profiling in large-area planar-waveguide optoelectronic devices , 1995 .

[17]  D. H. Pontius,et al.  Second breakdown and damage in junction devices , 1973 .

[18]  Eckehard Schöll,et al.  Nonequilibrium phase transitions in semiconductors , 1987 .

[19]  Dionyz Pogany,et al.  Thermal and free carrier concentration mapping during ESD event in smart Power ESD protection devices using an improved laser interferometric technique , 2000 .

[20]  G. Krieger,et al.  Thermal response of integrated circuit input devices to an electrostatic energy pulse , 1987, IEEE Transactions on Electron Devices.

[21]  Wolfgang Fichtner,et al.  Analysis of lateral DMOS power devices under ESD stress conditions , 2000 .

[22]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[23]  Vernon,et al.  Temperature dependence of the near-infrared refractive index of silicon, gallium arsenide, and indium phosphide. , 1994, Physical review. B, Condensed matter.

[24]  M. Stecher,et al.  Interferometric temperature mapping during ESD stress and failure analysis of smart power technology ESD protection devices , 1999, Electrical Overstress/Electrostatic Discharge Symposium Proceedings. 1999 (IEEE Cat. No.99TH8396).