Diagram categories and invariant theory for classical groups and supergroups
暂无分享,去创建一个
[1] G. Lehrer,et al. First fundamental theorems of invariant theory for quantum supergroups , 2019, European Journal of Mathematics.
[2] K. Coulembier,et al. Borelic pairs for stratified algebras , 2016, Advances in Mathematics.
[3] G. Lehrer,et al. THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOSYMPLECTIC SUPERGROUP , 2014, Nagoya Mathematical Journal.
[4] G. Lehrer,et al. EQUIVALENCE OF A TANGLE CATEGORY AND A CATEGORY OF INFINITE DIMENSIONAL Uqpsl2q-MODULES , 2019 .
[5] K. Coulembier. Tensor ideals, Deligne categories and invariant theory , 2017, Selecta Mathematica.
[6] Dominic R. Verity,et al. ∞-Categories for the Working Mathematician , 2018 .
[7] G. Lehrer,et al. Invariants of the special orthogonal group and an enhanced Brauer category , 2016, 1612.03998.
[8] G. Lehrer,et al. The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup , 2016, 1602.04885.
[9] G. Lehrer,et al. Invariants of the orthosymplectic Lie superalgebra and super Pfaffians , 2015, 1507.01329.
[10] C. Stroppel,et al. Koszul gradings on Brauer algebras , 2015, 1504.03924.
[11] H. H. Andersen,et al. Cellularity of certain quantum endomorphism algebras , 2013, 1303.0984.
[12] R. B. Zhang,et al. The Brauer Category and Invariant Theory , 2012, 1207.5889.
[13] J. Comes. DELIGNE’S CATEGORY Rep(GLδ) AND REPRESENTATIONS OF GENERAL LINEAR SUPERGROUPS , 2012 .
[14] C. Stroppel,et al. Gradings on walled Brauer algebras and Khovanov’s arc algebra , 2011, 1107.0999.
[15] G. Lehrer,et al. THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOGONAL GROUP , 2011, 1102.3221.
[16] P. Martin. On Diagram Categories , Representation Theory and Statistical Mechanics , 2011 .
[17] Jun Hu,et al. On tensor spaces for Birman–Murakami–Wenzl algebras , 2010 .
[18] 行者 明彦. Representation theory of algebraic groups and quantum groups , 2010 .
[19] R. Wilson. The classical groups , 2009 .
[20] G. Lehrer,et al. On Endomorphisms of Quantum Tensor Space , 2008, 0806.3807.
[21] S. Parvathi,et al. Noncommutative rings, group rings, diagram algebras and their applications : international conference, December 18-22, 2006, University of Madras, Chennai, India , 2008 .
[22] G. Lehrer,et al. Strongly multiplicity free modules for Lie algebras and quantum groups , 2006 .
[23] Mei Si,et al. A criterion on the semisimple Brauer algebras II , 2006, J. Comb. Theory A.
[24] G. Lehrer,et al. Cellular algebras and diagram algebras in representation theory , 2004 .
[25] G. Lehrer,et al. Diagram algebras, Hecke algebras and decomposition numbers at roots of unity , 2003 .
[26] P. Etingof,et al. Lectures on Quantum Groups , 2001 .
[27] Leonard L. Scott,et al. Quantum Weyl Reciprocity and Tilting Modules , 1998 .
[28] R. Goodman,et al. Representations and Invariants of the Classical Groups , 1998 .
[29] P. Podlés,et al. Introduction to Quantum Groups , 1997, q-alg/9704002.
[30] R. B. Zhang,et al. Structure and Representations of the Quantum General Linear Supergroup , 1996, q-alg/9611024.
[31] G. Lehrer,et al. Cellular algebras , 1996 .
[32] R. B. Zhang,et al. QUANTUM SUPERGROUPS AND TOPOLOGICAL INVARIANTS OF THREE-MANIFOLDS , 1994, hep-th/9408177.
[33] V. Turaev. Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.
[34] T. Kerler. On braided tensor categories , 1994, hep-th/9402018.
[35] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[36] Vladimir Turaev,et al. Invariants of 3-manifolds via link polynomials and quantum groups , 1991 .
[37] A. Bracken,et al. Quantum group invariants and link polynomials , 1991 .
[38] A. Bracken,et al. Quantum Supergroups and Solutions of the {Yang-Baxter} Equation , 1990 .
[39] V. Turaev. OPERATOR INVARIANTS OF TANGLES, AND R-MATRICES , 1990 .
[40] V. Turaev,et al. Ribbon graphs and their invaraints derived from quantum groups , 1990 .
[41] David N. Yetter,et al. Braided Compact Closed Categories with Applications to Low Dimensional Topology , 1989 .
[42] Edward Witten,et al. Quantum field theory and the Jones polynomial , 1989 .
[43] Joan S. Birman,et al. Braids, link polynomials and a new algebra , 1989 .
[44] Hans Wenzl,et al. On the structure of Brauer’s centralizer algebras , 1988 .
[45] V. Jones. Hecke algebra representations of braid groups and link polynomials , 1987 .
[46] Amitai Regev,et al. Hook young diagrams with applications to combinatorics and to representations of Lie superalgebras , 1987 .
[47] H. Weyl. The Classical Groups , 1940 .
[48] Richard Brauer,et al. On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .