A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways

Abstract The hypercube is a well-known descriptive model for planning server-to-customer systems. In the present study we adapt this model to analyze Emergency Medical Systems on highways involving partial backup and multiple dispatching of ambulances. The modified model is then embedded into a genetic algorithm to optimize the configuration and operation of the system. By embedding the hypercube into a genetic algorithm, we can support decisions, such as, determining the optimal districts for the system in order to optimize the mean performance measures. Computational results are analyzed applying the approach to the case study of an EMS operating on Brazilian highways.

[1]  Richard Larson,et al.  O.R. Models for Homeland Security , 2004 .

[2]  Jeffrey Goldberg,et al.  Locating Emergency Vehicle Bases When Service Time Depends on Call Location , 1991, Transp. Sci..

[3]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[4]  S I Harewood,et al.  Emergency ambulance deployment in Barbados: a multi-objective approach , 2002, J. Oper. Res. Soc..

[5]  James P. Jarvis,et al.  Modeling co-located servers and dispatch ties in the hypercube model , 1993, Comput. Oper. Res..

[6]  J. Beasley Population Heuristics , 1999 .

[7]  Gilbert Laporte,et al.  Ambulance location and relocation models , 2000, Eur. J. Oper. Res..

[8]  Cem Saydam,et al.  Accurate estimation of expected coverage: revisited , 2003 .

[9]  Mark S. Daskin,et al.  Strategic facility location: A review , 1998, Eur. J. Oper. Res..

[10]  Richard C. Larson,et al.  Approximating the Performance of Urban Emergency Service Systems , 1975, Oper. Res..

[11]  Cem Saydam,et al.  A multiperiod set covering location model for dynamic redeployment of ambulances , 2008, Comput. Oper. Res..

[12]  J. Banks,et al.  Handbook of Simulation , 1998 .

[13]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[14]  Reinaldo Morabito,et al.  A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways , 2007 .

[15]  David J. Eaton,et al.  Determining Emergency Medical Service Vehicle Deployment in Austin, Texas , 1985 .

[16]  Reinaldo Morabito,et al.  Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model , 2001, J. Oper. Res. Soc..

[17]  Reinaldo Morabito,et al.  A discrete simulation analysis of a logistics supply system , 2006 .

[18]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[19]  Reinaldo Morabito,et al.  Towards unified formulations and extensions of two classical probabilistic location models , 2005, Comput. Oper. Res..

[20]  Reinaldo Morabito,et al.  Analysis of ambulance decentralization in an urban emergency medical service using the hypercube queueing model , 2007, Comput. Oper. Res..

[21]  J. P. Jarvis,et al.  Approximating the Equilibrium Behavior of Multi-Server Loss Systems , 1985 .

[22]  Randall P. Sadowski,et al.  Introduction to Simulation Using Siman , 1990 .

[23]  RICHARD C. LARSON,et al.  A hypercube queuing model for facility location and redistricting in urban emergency services , 1974, Comput. Oper. Res..

[24]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[25]  Vinícius Amaral Armentano,et al.  Genetic local search for multi-objective flowshop scheduling problems , 2005, Eur. J. Oper. Res..

[26]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[27]  Richard C. Larson,et al.  Urban Operations Research , 1981 .

[28]  Rajan Batta,et al.  The Maximal Expected Covering Location Problem: Revisited , 1989, Transp. Sci..

[29]  Alain Hertz,et al.  A framework for the description of evolutionary algorithms , 2000, Eur. J. Oper. Res..

[30]  Kenneth Chelst,et al.  Multiple Unit Dispatches in Emergency Services: Models to Estimate System Performance , 1981 .

[31]  Reinaldo Morabito,et al.  A note on solutions to the maximal expected covering location problem , 2003, Comput. Oper. Res..

[32]  Kapil Kumar Gupta,et al.  Ambulance deployment analysis: A case study of Bangkok , 1987 .

[33]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .