Reoptimization of Minimum and Maximum Traveling Salesman's Tours

In this paper, reoptimization versions of the traveling salesman problem (TSP) are addressed. Assume that an optimum solution of an instance is given and the goal is to determine if one can maintain a good solution when the instance is subject to minor modifications. We study the case where nodes are inserted in, or deleted from, the graph. When inserting a node, we show that the reoptimization problem for MinTSP is approximable within ratio 4/3 if the distance matrix is metric. We show that, dealing with metric MaxTSP, a simple heuristic is asymptotically optimum when a constant number of nodes are inserted. In the general case, we propose a 4/5-approximation algorithm for the reoptimization version of MaxTSP

[1]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[2]  Kenneth Steiglitz,et al.  Some complexity results for the Traveling Salesman Problem , 1976, STOC '76.

[3]  Daniel J. Rosenkrantz,et al.  An Analysis of Several Heuristics for the Traveling Salesman Problem , 1977, SIAM J. Comput..

[4]  David Eppstein,et al.  Sparsification-a technique for speeding up dynamic graph algorithms , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[5]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[6]  Rolf H. Möhring,et al.  Scheduling project networks with resource constraints and time windows , 1988 .

[7]  Mihalis Yannakakis,et al.  The Traveling Salesman Problem with Distances One and Two , 1993, Math. Oper. Res..

[8]  Refael Hassin,et al.  A 7/8-approximation algorithm for metric Max TSP , 2001, Inf. Process. Lett..

[9]  陳 致中,et al.  Improved Deterministic Approximation Algorithms for Max TSP (計算機科学基礎理論とその応用 研究集会報告集) , 2005 .

[10]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[11]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[12]  Rolf H. Möhring,et al.  Design aspects of an advanced model-oriented DSS for scheduling problems in civil engineering , 1989, Decis. Support Syst..

[13]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[14]  David S. Johnson,et al.  8. The traveling salesman problem: a case study , 2003 .

[15]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[16]  Markus W. Schäffter,et al.  Scheduling with Forbidden Sets , 1997, Discret. Appl. Math..

[17]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[18]  Guido Proietti,et al.  Reusing Optimal TSP Solutions for Locally Modified Input Instances , 2006, IFIP TCS.

[19]  Monika Henzinger,et al.  Maintaining Minimum Spanning Trees in Dynamic Graphs , 1997, ICALP.

[20]  Luca Bertazzi,et al.  Reoptimizing the traveling salesman problem , 2003, Networks.