Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics

[1] Collocated global atmospheric temperature, humidity, and refractivity profiles from radiosondes and from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation data for April 2008 to October 2009 are compared for two purposes. The first is to quantify the error characteristics of 12 radiosonde types flown in the global operational network, as a function of height and for both day and nighttime observations, for each of the three variables. The second is to determine the effects of imperfect temporal and spatial collocation on the radiosonde-COSMIC differences, for application to the general problem of satellite calibration and validation using in situ sounding data. Statistical analyses of the comparisons reveal differences among radiosonde types in refractivity, relative humidity, and radiation-corrected temperature data. Most of the radiosonde types show a dry bias, particularly in the upper troposphere, with the bias in daytime drier than in nighttime. Weather-scale variability, introduced by collocation time and distance mismatch, affects the comparison of radiosonde and COSMIC data by increasing the standard deviation errors, which are generally proportional to the size of the time and distance mismatch within the collocation window of 6 h and 250 km considered. Globally, in the troposphere (850–200 hPa), the collocation mismatch impacts on the comparison standard deviation errors for temperature are 0.35 K per 3 h and 0.42 K per 100 km and, for relative humidity, are 3.3% per 3 h and 3.1% per 100 km, indicating an approximate equivalence of 3 h to 100 km in terms of mismatch impact.

[1]  Ying-Hwa Kuo,et al.  Diagnosis of an Intense Atmospheric River Impacting the Pacific Northwest: Storm Summary and Offshore Vertical Structure Observed with COSMIC Satellite Retrievals , 2008 .

[2]  A. Reale,et al.  NOAA operational sounding products for advanced TOVS , 2008 .

[3]  H. Vömel,et al.  Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations , 2007 .

[4]  Douglas Hunt,et al.  Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT‐3 mission , 2007 .

[5]  John R. Lanzante,et al.  Temporal Homogenization of Monthly Radiosonde Temperature Data. Part I: Methodology , 2003 .

[6]  Ying-Hwa Kuo,et al.  Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data , 2009 .

[7]  Chi O. Ao,et al.  Effect of ducting on radio occultation measurements: An assessment based on high‐resolution radiosonde soundings , 2007 .

[8]  J. Christy,et al.  Discontinuity Issues with Radiosonde and Satellite Temperatures in the Australian Region 1979–2006 , 2009 .

[9]  Fuzhong Weng,et al.  JCSDA Community Radiative Transfer Model (CRTM) : version 1 , 2006 .

[10]  L. Larrabee Strow,et al.  Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation , 2006 .

[11]  John R. Christy,et al.  MSU Tropospheric Temperatures: Dataset Construction and Radiosonde Comparisons , 2000 .

[12]  Dean Lauritsen,et al.  Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew‐point hygrometer and its climate implication , 2003 .

[13]  Junhong Wang,et al.  Systematic Errors in Global Radiosonde Precipitable Water Data from Comparisons with Ground-Based GPS Measurements , 2008 .

[14]  Larry M. McMillin,et al.  A Method for the Use of Satellite Retrievals as a Transfer Standard to Determine Systematic Radiosonde Errors , 1988 .

[15]  Clifford A. Jacobs,et al.  University Corporation for Atmospheric Research , 2012 .

[16]  Ying-Hwa Kuo,et al.  Comparison of GPS radio occultation soundings with radiosondes , 2005 .

[17]  Bomin Sun,et al.  The NOAA Products Validation System (NPROVS) , 2012 .

[18]  Christian Rocken,et al.  THE COSMIC/FORMOSAT-3 MISSION THE COSMIC/FORMOSAT-3 MISSION , 2008 .

[19]  Thomas C. Peterson,et al.  Reference Upper-Air Observations for Climate: Rationale, Progress, and Plans , 2009 .

[20]  J. Mcneff The global positioning system , 2002 .

[21]  Gail E. Bingham,et al.  IASI temperature and water vapor retrievals – error assessment and validation , 2009 .

[22]  David N. Whiteman,et al.  Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation , 2006 .

[23]  George Antoine Hajj,et al.  A comparison of water vapor derived from GPS occultations and global weather analyses , 2001 .

[24]  Christopher D. Barnet,et al.  Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts , 2006 .

[25]  John R. Lanzante,et al.  An Assessment of Satellite and Radiosonde Climatologies of Upper-Tropospheric Water Vapor. , 1996 .

[26]  Hajime Nakamura,et al.  Dry Biases of Humidity Measurements from the Vaisala RS80-A and Meisei RS2-91 Radiosondes and from Ground-Based GPS , 2004 .

[27]  Christian Rocken,et al.  The COSMIC/FORMOSAT-3 Mission: Early Results , 2008 .

[28]  Christopher D. Barnet,et al.  Water Vapor Measurements by Howard University Raman Lidar during the WAVES 2006 Campaign , 2010 .

[29]  W. Read,et al.  Validation of Aura Microwave Limb Sounder water vapor by balloon‐borne Cryogenic Frost point Hygrometer measurements , 2007 .

[30]  Robert E. Eskridge,et al.  Use of Radiosonde Temperature Data in Climate Studies , 1998 .

[31]  Eric S. Maddy,et al.  Vertical Resolution Estimates in Version 5 of AIRS Operational Retrievals , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[32]  L. McMillin,et al.  Radiosonde humidity corrections and potential Atmospheric Infrared Sounder moisture accuracy , 2007 .

[33]  Ying-Hwa Kuo,et al.  Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open‐loop mode , 2006 .

[34]  Nikita Pougatchev,et al.  Validation of atmospheric sounders by correlative measurements. , 2008, Applied optics.

[35]  Ernest K. Smith,et al.  The constants in the equation for atmospheric refractive index at radio frequencies , 1953 .

[36]  Christian Rocken,et al.  Inversion and error estimation of GPS radio occultation Data , 2004 .

[37]  Chi O. Ao,et al.  Use of Radio Occultation to Evaluate Atmospheric Temperature Data from Spaceborne Infrared Sensors , 2009 .

[38]  D. Gaffen,et al.  Temporal inhomogeneities in radiosonde temperature records , 1994 .

[39]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[40]  Changyong Cao,et al.  Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses , 2006 .

[41]  Ying-Hwa Kuo,et al.  A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data , 2007 .