MEASURING DISTRIBUTION MODEL RISK

We propose to interpret distribution model risk as sensitivity of expected loss to changes in the risk factor distribution, and to measure the distribution model risk of a portfolio by the maximum expected loss over a set of plausible distributions defined in terms of some divergence from an estimated distribution. The divergence may be relative entropy or another f‐divergence or Bregman distance. We use the theory of minimizing convex integral functionals under moment constraints to give formulae for the calculation of distribution model risk and to explicitly determine the worst case distribution from the set of plausible distributions. We also evaluate related risk measures describing divergence preferences.

[1]  I. Vajda,et al.  Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.

[2]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[3]  Imre Csiszár,et al.  Systematic stress tests with entropic plausibility constraints , 2013 .

[4]  Amir Ahmadi-Javid,et al.  Entropic Value-at-Risk: A New Coherent Risk Measure , 2012, J. Optim. Theory Appl..

[5]  Imre Csiszár,et al.  Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities , 2012, Kybernetika.

[6]  Marcel Nutz,et al.  Superhedging and Dynamic Risk Measures Under Volatility Uncertainty , 2010, SIAM J. Control. Optim..

[7]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[8]  J. Schumacher,et al.  Model risk and capital reserves , 2010 .

[9]  Lars Peter Hansen,et al.  Doubts or variability? , 2009, J. Econ. Theory.

[10]  Bogdan Grechuk,et al.  Maximum Entropy Principle with General Deviation Measures , 2009, Math. Oper. Res..

[11]  Imre Csiszár,et al.  On minimization of entropy functionals under moment constraints , 2008, 2008 IEEE International Symposium on Information Theory.

[12]  Giuseppe Carlo Calafiore,et al.  Ambiguous Risk Measures and Optimal Robust Portfolios , 2007, SIAM J. Optim..

[13]  Lars Peter Hansen,et al.  Recursive Robust Estimation and Control Without Commitment , 2007, J. Econ. Theory.

[14]  M. Teboulle,et al.  AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .

[15]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[16]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[17]  A. Dawid,et al.  Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory , 2004, math/0410076.

[18]  Rama Cont,et al.  MODEL UNCERTAINTY AND ITS IMPACT ON THE PRICING OF DERIVATIVE INSTRUMENTS , 2004 .

[19]  Craig A. Friedman Conditional Value-at-Risk in the Presence of Multiple Probability Measures , 2002 .

[20]  Craig A. Friedman Confronting Model Misspecification in Finance: Tractable Collections of Scenario Probability Measures for Robust Financial Optimization Problems , 2002 .

[21]  F. Delbaen Coherent Risk Measures on General Probability Spaces , 2002 .

[22]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[23]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[24]  Ramon Casadesus-Masanell,et al.  Maxmin Expected Utility over Savage Acts with a Set of Priors , 2000, J. Econ. Theory.

[25]  Rajna Gibson,et al.  Model risk : concepts, calibration and pricing , 2000 .

[26]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[27]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[28]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[29]  Marco Avellaneda,et al.  Managing the volatility risk of portfolios of derivative securities: the Lagrangian uncertain volatility model , 1996 .

[30]  Douglas J. Miller,et al.  Maximum entropy econometrics: robust estimation with limited data , 1996 .

[31]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[32]  Jeff B. Paris,et al.  A note on the inevitability of maximum entropy , 1990, Int. J. Approx. Reason..

[33]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[34]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[35]  O. Barndorff-Nielsen Information and Exponential Families in Statistical Theory , 1980 .

[36]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[37]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[38]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[39]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[40]  S. Kullback Information Theory and Statistics , 1959 .

[41]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[42]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .