Exploiting special structure in a primal—dual path-following algorithm

AbstractA primal-dual path-following algorithm that applies directly to a linear program of the form, min{ctx∣Ax = b, Hx ⩽u, x ⩾ 0,x ∈ ℝn}, is presented. This algorithm explicitly handles upper bounds, generalized upper bounds, variable upper bounds, and block diagonal structure. We also show how the structure of time-staged problems and network flow problems can be exploited, especially on a parallel computer. Finally, using our algorithm, we obtain a complexity bound of O( $$\sqrt n $$ ds2 log(nk)) fortransportation problems withs origins,d destinations (s <d), andn arcs, wherek is the maximum absolute value of the input data.

[1]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[2]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[3]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[4]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[5]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[6]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[7]  Earl R. Barnes,et al.  A variation on Karmarkar’s algorithm for solving linear programming problems , 1986, Math. Program..

[8]  D. Moore A Round-Robin Parallel Partitioning Algorithm , 1988 .

[9]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..

[10]  J. Birge,et al.  Computing block-angular Karmarkar projections with applications to stochastic programming , 1988 .

[11]  C. C. Gonzaga,et al.  An algorithm for solving linear programming programs in O(n3L) operations , 1988 .

[12]  R. C. Monteiro,et al.  Interior path following primal-dual algorithms , 1988 .

[13]  Michael J. Todd,et al.  Exploiting special structure in Karmarkar's linear programming algorithm , 1988, Math. Program..

[14]  S. Mizuno,et al.  POLYNOMIAL TIME INTERIOR POINT ALGORITHMS FOR TRANSPORTATION PROBLEMS , 1989 .

[15]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[16]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[17]  S. Mizuno,et al.  A POLYNOMIAL TIME INTERIOR POINT ALGORITHM FOR MINIMUM COST FLOW PROBLEMS , 1990 .

[18]  Clyde L. Monma,et al.  Further Development of a Primal-Dual Interior Point Method , 1990, INFORMS J. Comput..

[19]  Robert M. Freund,et al.  Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function , 1991, Math. Program..

[20]  Yinyu Ye,et al.  An O(n3L) potential reduction algorithm for linear programming , 1991, Math. Program..

[21]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[22]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..