Reducing Surface Recombination Velocity of Methylammonium-Free Mixed-Cation Mixed-Halide Perovskites via Surface Passivation

[1]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[2]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[3]  Martin A. Green,et al.  Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells , 2020, Science.

[4]  E. Mosconi,et al.  Charge localization and trapping at surfaces in lead-iodide perovskites: the role of polarons and defects , 2020 .

[5]  Dong Hoe Kim,et al.  Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites , 2020, Science.

[6]  Andrew H. Proppe,et al.  Regulating strain in perovskite thin films through charge-transport layers , 2020, Nature Communications.

[7]  J. D. Murphy,et al.  Sub-2 cm/s passivation of silicon surfaces by aprotic solutions , 2020 .

[8]  M. Mann,et al.  Pervasive functional translation of noncanonical human open reading frames , 2020, Science.

[9]  Zhengshan J. Yu,et al.  Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems , 2020, Science.

[10]  M. Johnston,et al.  Revealing the origin of voltage loss in mixed-halide perovskite solar cells , 2020, Energy & Environmental Science.

[11]  Fuyi Wang,et al.  Interfacial Passivation for Perovskite Solar Cells: The Effects of the Functional Group in Phenethylammonium Iodide , 2019, ACS Energy Letters.

[12]  Bernd Rech,et al.  Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells , 2019, Energy & Environmental Science.

[13]  Joseph J. Berry,et al.  Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability , 2019, Nature Energy.

[14]  T. Unold,et al.  Pathways towards 30% efficient perovskite solar cells. , 2019, 1910.07422.

[15]  T. Miyasaka,et al.  Perovskite Solar Cells: Can We Go Organic‐Free, Lead‐Free, and Dopant‐Free? , 2019, Advanced Energy Materials.

[16]  Sean P. Dunfield,et al.  Enabling Flexible All-Perovskite Tandem Solar Cells , 2019, Joule.

[17]  Bruno Ehrler,et al.  Local Crystal Misorientation Influences Non-radiative Recombination in Halide Perovskites , 2019, Joule.

[18]  N. Armstrong,et al.  Impact of Titanium Dioxide Surface Defects on the Interfacial Composition and Energetics of Evaporated Perovskite Active Layers. , 2019, ACS applied materials & interfaces.

[19]  Seong Sik Shin,et al.  An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss , 2019, Energy & Environmental Science.

[20]  T. Unold,et al.  The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells , 2019, Energy & Environmental Science.

[21]  Luis M. Pazos-Outón,et al.  Long-Range Charge Extraction in Back-Contact Perovskite Architectures via Suppressed Recombination , 2019, Joule.

[22]  E. Mosconi,et al.  Formation of Surface Defects Dominates Ion Migration in Lead-Halide Perovskites , 2019, ACS Energy Letters.

[23]  G. Mannino,et al.  Nitrogen Soaking Promotes Lattice Recovery in Polycrystalline Hybrid Perovskites , 2019, Advanced Energy Materials.

[24]  Ahmad R. Kirmani,et al.  In Situ Back‐Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells , 2019, Advanced materials.

[25]  David Cahen,et al.  Halide Perovskites: Is It All about the Interfaces? , 2018, Chemical reviews.

[26]  A. Jen,et al.  Reducing Surface Recombination Velocities at the Electrical Contacts Will Improve Perovskite Photovoltaics , 2018, ACS Energy Letters.

[27]  Thomas Kirchartz,et al.  Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells , 2018, ACS Energy Letters.

[28]  Rongrong Cheacharoen,et al.  Encapsulating perovskite solar cells to withstand damp heat and thermal cycling , 2018 .

[29]  Yichuan Ding,et al.  Engineering Stress in Perovskite Solar Cells to Improve Stability , 2018, Advanced Energy Materials.

[30]  Luis M. Pazos-Outón,et al.  Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency , 2018 .

[31]  A. Jen,et al.  Overcoming the Photovoltage Plateau in Large Bandgap Perovskite Photovoltaics. , 2018, Nano letters.

[32]  A. Jen,et al.  Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying , 2018 .

[33]  Alex Dixon,et al.  Curtailing Perovskite Processing Limitations via Lamination at the Perovskite/Perovskite Interface , 2018 .

[34]  Peng Chen,et al.  In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells , 2018 .

[35]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[36]  A. Barker,et al.  Iodine chemistry determines the defect tolerance of lead-halide perovskites , 2018 .

[37]  C. Yam,et al.  First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. , 2018, Physical chemistry chemical physics : PCCP.

[38]  L. Quan,et al.  Amide‐Catalyzed Phase‐Selective Crystallization Reduces Defect Density in Wide‐Bandgap Perovskites , 2018, Advanced materials.

[39]  P. McIntyre,et al.  Thermal Stability of Mixed Cation Metal Halide Perovskites in Air. , 2018, ACS applied materials & interfaces.

[40]  T. Leijtens,et al.  Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation , 2018 .

[41]  Henry J. Snaith,et al.  Metal halide perovskite tandem and multiple-junction photovoltaics , 2017 .

[42]  Dane W. deQuilettes,et al.  Tracking Photoexcited Carriers in Hybrid Perovskite Semiconductors: Trap-Dominated Spatial Heterogeneity and Diffusion. , 2017, ACS nano.

[43]  M. Schubert,et al.  Superacid-Treated Silicon Surfaces: Extending the Limit of Carrier Lifetime for Photovoltaic Applications , 2017, IEEE Journal of Photovoltaics.

[44]  Sandeep Kumar Pathak,et al.  Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals , 2017 .

[45]  E. Garnett,et al.  Nanoscale Back Contact Perovskite Solar Cell Design for Improved Tandem Efficiency , 2017, Nano letters.

[46]  A. Jen,et al.  Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage , 2017, Advanced materials.

[47]  N. Armstrong,et al.  Determining Band-Edge Energies and Morphology-Dependent Stability of Formamidinium Lead Perovskite Films Using Spectroelectrochemistry and Photoelectron Spectroscopy. , 2017, Journal of the American Chemical Society.

[48]  D. Beljonne,et al.  Influence of Surface Termination on the Energy Level Alignment at the CH3NH3PbI3 Perovskite/C60 Interface , 2017 .

[49]  Kai Zhu,et al.  Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films , 2017, Nature Energy.

[50]  Luis M. Pazos-Outón,et al.  Research data supporting: "Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling" , 2016 .

[51]  Mohammad Khaja Nazeeruddin,et al.  Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[52]  Thomas Kirchartz,et al.  Beyond Bulk Lifetimes: Insights into Lead Halide Perovskite Films from Time-Resolved Photoluminescence , 2016 .

[53]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[54]  David S. Ginger,et al.  Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation , 2016 .

[55]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[56]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[57]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[58]  Martin A. Green,et al.  The Passivated Emitter and Rear Cell (PERC): From conception to mass production , 2015 .

[59]  D. Kuciauskas,et al.  Intrinsic surface passivation of CdTe , 2015 .

[60]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[61]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[62]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[63]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[64]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[65]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[66]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[67]  Marika Edoff,et al.  Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts , 2013 .

[68]  M. Burgelman,et al.  Advanced electrical simulation of thin film solar cells , 2013 .

[69]  Dmitriy A. Khodakov,et al.  Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces , 2012 .

[70]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[71]  M. Ho,et al.  Hydrolysis and Condensation of Self-Assembled Monolayers of (3-Mercaptopropyl)trimethoxysilane on Ag and Au Surfaces , 1997 .

[72]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[73]  Y. Ogita Bulk lifetime and surface recombination velocity measurement method in semiconductor wafers , 1996 .

[74]  C. J. Brinker,et al.  Hydrolysis and condensation of silicates: Effects on structure , 1988 .

[75]  J. Woodall,et al.  High‐efficiency Ga1−xAlxAs–GaAs solar cells , 1972 .

[76]  R. T. Ross,et al.  Some Thermodynamics of Photochemical Systems , 1967 .