Selected Recent Applications of Sparse Grids

Sparse grids have become a versatile tool for a vast range of applications reaching from interpolation and numerical quadrature to data-driven problems and uncertainty quantification. We review four selected real-world applications of sparse grids: financial product pricing with the Black-Scholes model, interactive exploration of simulation data with sparse-grid-based surrogate models, analysis of simulation data through sparse grid data mining methods, and stability investigations of plasma turbulence simulations.

[1]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[2]  Dirk Pflüger,et al.  A Parallel and Distributed Surrogate Model Implementation for Computational Steering , 2012, 2012 11th International Symposium on Parallel and Distributed Computing.

[3]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[4]  Markus Hegland,et al.  An Opticom Method for Computing Eigenpairs , 2014 .

[5]  Liquan Mei,et al.  Data analysis for parallel car-crash simulation results and model optimization , 2008, Simul. Model. Pract. Theory.

[6]  Benjamin Peherstorfer,et al.  Analysis of Car Crash Simulation Data with Nonlinear Machine Learning Methods , 2013, ICCS.

[7]  Dirk Pflüger,et al.  Option pricing with a direct adaptive sparse grid approach , 2012, J. Comput. Appl. Math..

[8]  Benjamin Peherstorfer Model order reduction of parametrized systems with sparse grid learning techniques , 2013 .

[9]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[10]  Dirk Pflüger,et al.  Emerging Architectures Enable to Boost Massively Parallel Data Mining Using Adaptive Sparse Grids , 2013, International Journal of Parallel Programming.

[11]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[12]  Eloy Romero,et al.  Multi-dimensional gyrokinetic parameter studies based on eigenvalue computations , 2012, Comput. Phys. Commun..

[13]  Daniel Butnaru,et al.  Computational steering with reduced complexity , 2014 .

[14]  Dirk Pflüger,et al.  Hybrid parallel solutions of the Black-Scholes PDE with the truncated combination technique , 2012, 2012 International Conference on High Performance Computing & Simulation (HPCS).

[15]  Christoph Schwab,et al.  Sparse finite element methods for operator equations with stochastic data , 2006 .

[16]  Alexander Hinneburg,et al.  DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation , 2007, IDA.

[17]  Benjamin Peherstorfer,et al.  Density Estimation with Adaptive Sparse Grids for Large Data Sets , 2014, SDM.

[18]  Rob Stevenson,et al.  An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .

[19]  M. Hegland Adaptive sparse grids , 2003 .

[20]  Andreas Zeiser,et al.  Fast Matrix-Vector Multiplication in the Sparse-Grid Galerkin Method , 2011, J. Sci. Comput..

[21]  Gabriel Wittum,et al.  Efficient Hierarchical Approximation of High-Dimensional Option Pricing Problems , 2007, SIAM J. Sci. Comput..

[22]  Jochen Garcke,et al.  Regression with the optimised combination technique , 2006, ICML.

[23]  Jochen Garcke,et al.  A dimension adaptive sparse grid combination technique for machine learning , 2007 .

[24]  Michael Griebel,et al.  Dimension-wise integration of high-dimensional functions with applications to finance , 2010, J. Complex..

[25]  Dirk Pflüger,et al.  Towards High-Dimensional Computational Steering of Precomputed Simulation Data using Sparse Grids , 2011, ICCS.

[26]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[27]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[28]  Aihui Zhou,et al.  Error analysis of the combination technique , 1999, Numerische Mathematik.

[29]  Michael R. Osborne,et al.  A new method for the solution of eigenvalue problems , 1964, Comput. J..

[30]  Benjamin Peherstorfer,et al.  Fast Insight into High-Dimensional Parametrized Simulation Data , 2012, 2012 11th International Conference on Machine Learning and Applications.

[31]  Jochen Garcke An Optimised Sparse Grid Combination Technique for Eigenproblems , 2007 .

[32]  Laurent Villard,et al.  Global and local gyrokinetic simulations of high-performance discharges in view of ITER , 2013 .

[33]  Stephen Roberts,et al.  Finite element thin plate splines in density estimation , 2009 .

[34]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[35]  Benjamin Peherstorfer,et al.  Spatially adaptive sparse grids for high-dimensional data-driven problems , 2010, J. Complex..

[36]  Dirk Pflüger,et al.  Spatially Adaptive Refinement , 2012 .

[37]  Yuan Fang The combination approximation method , 2011 .

[38]  Michael R. Osborne,et al.  Computing eigenvalues of ordinary differential equations , 2003 .

[39]  Benjamin Peherstorfer,et al.  Model Reduction with the Reduced Basis Method and Sparse Grids , 2012 .

[40]  Michael Griebel,et al.  On the Parallelization of the Sparse Grid Approach for Data Mining , 2001, LSSC.

[41]  Benjamin Peherstorfer,et al.  A Sparse-Grid-Based Out-of-Sample Extension for Dimensionality Reduction and Clustering with Laplacian Eigenmaps , 2011, Australasian Conference on Artificial Intelligence.

[42]  Markus Hegland,et al.  The Sparse Grid Combination Technique for Computing Eigenvalues in Linear Gyrokinetics , 2013, ICCS.

[43]  Michael Griebel,et al.  Data Mining with Sparse Grids , 2001, Computing.

[44]  Barbara I. Wohlmuth,et al.  Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB , 2005, TOMS.

[45]  Frank Jenko,et al.  Application Enabling in DEISA: Petascaling of Plasma Turbulence Codes , 2007, PARCO.

[46]  Hans-Joachim Bungartz,et al.  A highly parallel Black–Scholes solver based on adaptive sparse grids , 2012, Int. J. Comput. Math..

[47]  Frank Jenko,et al.  Fast eigenvalue calculations in a massively parallel plasma turbulence code , 2010, Parallel Comput..

[48]  Dirk Pflüger,et al.  Parallelizing a Black-Scholes solver based on finite elements and sparse grids , 2010, 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW).

[49]  Markus Hegland,et al.  The combination technique and some generalisations , 2007 .

[50]  P. Oswald,et al.  On additive Schwarz preconditioners for sparse grid discretizations , 1993 .

[51]  Stanislav V. Klimenko,et al.  Towards interactive simulation in automotive design , 2008, The Visual Computer.

[52]  U. Rüde,et al.  Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems , 1992, Forschungsberichte, TU Munich.

[53]  Benjamin Peherstorfer,et al.  Clustering Based on Density Estimation with Sparse Grids , 2012, KI.

[54]  Christian Feuersänger,et al.  Sparse grid methods for higher dimensional approximation , 2010 .