Synthesis and transport properties in La2−xAxMo2O9−δ (A = Ca2+, Sr2+, Ba2+, K+) series

Abstract The La 2− x A x Mo 2 O 9− δ (A = Ca 2+ , Sr 2+ , Ba 2+ and K + ) series has been synthesised as nanocrystalline materials via a modification of the freeze-drying method. The resulting materials have been characterised by X-ray diffraction (XRD), thermal analysis (TG/DTA, DSC), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The high-temperature β-polymorph is stabilised for dopant content x  > 0.01. The nanocrystalline powders were used to obtain dense ceramic materials with optimised microstructure and relative density >95%. The overall conductivity determined by impedance spectroscopy depends on both the ionic radius and dopant content. The conductivity decreases slightly as the dopant content increases in addition a maximum conductivity value was found for Sr 2+ substitution, which show an ionic radii slightly higher than La 3+ (e.g. 0.08 S cm −1 for La 2 Mo 2 O 9 and 0.06 S cm −1 for La 1.9 Sr 0.1 Mo 2 O 9− δ at 973 K). The creation of extrinsic vacancies upon substitution results in a wider stability range under reducing conditions and prevents amorphisation, although the stability is not enhanced significantly when compared to samples with higher tungsten content. These materials present high thermal expansion coefficients in the range of (13–16) × 10 −6  K −1 between room temperature and 753 K and (18–20) × 10 −6  K −1 above 823 K. The ionic transport numbers determined by a modified emf method remain above 0.98 under an oxygen partial pressure gradient of O 2 /air and decreases substantially under wet 5% H 2 –Ar/air when approaching to the degradation temperature above 973 K due to an increase of the electronic contribution to the overall conductivity.

[1]  V. Kharton,et al.  Transport properties and thermal expansion of La2Mo2O9-based solid electrolytes , 2005 .

[2]  A. Manthiram,et al.  Fast oxide-ion conduction in intergrowth structures , 1992 .

[3]  F. Aldinger,et al.  Synthesis and characterization of (La1-xMx)2Mo2O9-δ ; M=Ca2+, Sr2+ or Ba2+ , 2004 .

[4]  N. Sammes,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[5]  G. Mairesse,et al.  The bimevox series: A new family of high performances oxide ion conductors , 1990 .

[6]  S. Bruque,et al.  Synthesis, Structures, and Thermal Expansion of the La2W2−xMoxO9 Series , 2002 .

[7]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .

[8]  J. Canales‐Vázquez,et al.  Electrical conductivity and redox stability of La2Mo2−xWxO9 materials , 2005 .

[9]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[10]  Z. Wen,et al.  Ionic conductivity and microstructure of solid electrolyte La2Mo2O9 prepared by spark-plasma sintering , 2005 .

[11]  J. Abrantes,et al.  Synthesis and characterization of La2Mo2O9 obtained from freeze-dried precursors , 2004 .

[12]  F. Goutenoire,et al.  Crystal Structure of La2Mo2O9, a New Fast Oxide−Ion Conductor , 2000 .

[13]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[14]  T. Kudo,et al.  Mixed Electrical Conduction in the Fluorite‐Type Ce1 − x Gd x O 2 − x / 2 , 1976 .

[15]  D. Marrero-López,et al.  Effects of preparation method on the microstructure and transport properties of La2Mo2O9 based materials , 2006 .

[16]  J. Abrantes,et al.  Stability and transport properties of La2Mo2O9 , 2004 .

[17]  H. S. Maiti,et al.  Nb-Doped La2Mo2O9: A New Material with High Ionic Conductivity , 2005 .

[18]  P. Slater,et al.  A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26 , 2001 .

[19]  L. León-Reina,et al.  Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes , 2004 .

[20]  F. Fauth,et al.  Thermal, structural and transport properties of the fast oxide-ion conductors La2-xRxMo2O9 (R=Nd, Gd, Y) , 2003 .

[21]  Wuzong Zhou,et al.  Structural studies on W6+ and Nd3+ substituted La2Mo2O9 materials , 2006 .

[22]  E. Suard,et al.  Structural and transport characteristics ofthe LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenumoxide La2Mo2O9 , 2001 .

[23]  F. Goutenoire,et al.  Reducibility of fast oxide-ion conductors La2−xRxMo2−yWyO9(R = Nd, Gd) , 2003 .

[24]  J.P.P. Huijsmans,et al.  Sinter behaviour of (La, Sr)MnO3 , 1993 .

[25]  J. Canales‐Vázquez,et al.  Synthesis, sinterability and ionic conductivity of nanocrystalline La2Mo2O9 powders , 2005 .

[26]  Yvon Laligant,et al.  Designing fast oxide-ion conductors based on La2Mo2O 9 , 2000, Nature.

[27]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[28]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[29]  J. S. Evans,et al.  The Crystal Structure of α-La2Mo2O9 and the Structural Origin of the Oxide Ion Migration Pathway , 2005 .

[30]  T. He,et al.  The effects on the structures and properties in the oxide-ion conductor La2Mo2O9 by partial substituting Ba for La , 2005 .

[31]  H. S. Maiti,et al.  A potential low-temperature oxide-ion conductor: La2−xBaxMo2O9 , 2004 .

[32]  B. Boulard,et al.  On the flexibility of the structural framework of cubic LAMOX compounds, in relationship with their anionic conduction properties. , 2006, Inorganic Chemistry.

[33]  F. Goutenoire,et al.  Sintering and electrical conductivity in fast oxide ion conductors La2−xRxMo2−yWyO9 (R: Nd, Gd, Y) , 2005 .

[34]  Q. Fang,et al.  Dielectric relaxation studies of Bi-doping effects on the oxygen-ion diffusion in La2−xBixMo2O9 oxide-ion conductors , 2002 .

[35]  S. Stefanovich,et al.  Synthesis and Properties of La2(Mo1 – xMx )2O9 (M = Nb, Ta) Ionic Conductors , 2002 .

[36]  L. León-Reina,et al.  Enhancement of Oxide Ion Conductivity in Cuspidine-Type Materials , 2004 .

[37]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .

[38]  Xuejiang Wang,et al.  Influence of potassium doping on the oxygen-ion diffusion and ionic conduction in the La2Mo2O9 oxide-ion conductors , 2005 .

[39]  H. Yahiro,et al.  Electrical properties and reducibilities of ceria−rare earth oxide systems and their application to solid oxide fuel cell , 1989 .