Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems
暂无分享,去创建一个
[1] Dumitru Baleanu,et al. On shifted Jacobi spectral approximations for solving fractional differential equations , 2013, Appl. Math. Comput..
[2] Şuayip Yüzbaşı,et al. Numerical solution of the Bagley–Torvik equation by the Bessel collocation method , 2013 .
[3] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[4] K. Diethelm,et al. Fractional Calculus: Models and Numerical Methods , 2012 .
[5] E. A. Rawashdeh,et al. Numerical solution of fractional integro-differential equations by collocation method , 2006, Appl. Math. Comput..
[6] A. Kılıçman,et al. Robustness of Operational Matrices of Differentiation for Solving State-Space Analysis and Optimal Control Problems , 2013 .
[7] M. El-Kady,et al. FRACTIONAL DIFFERENTIATION MATRICES FOR SOLVING FRACTIONAL ORDERS DIFFERENTIAL EQUATIONS , 2013 .
[8] S. Momani,et al. Solving Linear and Nonlinear Fractional Differential Equations Using Spline Functions , 2012 .
[9] Sohrab Effati,et al. A New Piecewise-Spectral Homotopy Analysis Method for Solving Chaotic Systems of Initial Value Problems , 2013 .
[10] Dumitru Baleanu,et al. Variational iteration method for fractional calculus - a universal approach by Laplace transform , 2013 .
[11] Dumitru Baleanu,et al. Positive Solutions of an Initial Value Problem for Nonlinear Fractional Differential Equations , 2012 .
[12] Saeed Kazem,et al. A modification of the homotopy analysis method based on Chebyshev operational matrices , 2013, Math. Comput. Model..
[13] J. Machado,et al. On a Generalized Laguerre Operational Matrix of Fractional Integration , 2013 .
[14] A. A. Hemeda. New Iterative Method: An Application for Solving Fractional Physical Differential Equations , 2013 .
[15] Ali H. Bhrawy,et al. A quadrature tau method for fractional differential equations with variable coefficients , 2011, Appl. Math. Lett..
[16] Manuel Duarte Ortigueira,et al. Introduction to fractional linear systems. Part 1. Continuous-time case , 2000 .
[17] Saeid Abbasbandy,et al. An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems , 2012 .
[18] S. Das,et al. Functional Fractional Calculus for System Identification and Controls , 2007 .
[19] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[20] Fengshun Lu,et al. Fractional Variational Iteration Method versus Adomian's Decomposition Method in Some Fractional Partial Differential Equations , 2013, J. Appl. Math..
[21] Mustafa Gülsu,et al. Numerical approach for solving fractional Fredholm integro-differential equation , 2013, Int. J. Comput. Math..
[22] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[23] Eid H. Doha,et al. A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order , 2011, Comput. Math. Appl..
[24] D. Baleanu,et al. A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials , 2012 .
[25] Ali H. Bhrawy,et al. A new modified generalized Laguerre operational matrix of fractional integration for solving fractional differential equations on the half line , 2012 .
[26] K. Parand,et al. Application of the Exact Operational Matrices Based on the Bernstein Polynomials , 2013 .
[27] Francisco Marcellán,et al. Journal of Mathematical Analysis and Applications Monotonicity of Zeros of Laguerre–sobolev-type Orthogonal Polynomials , 2022 .
[28] E. H. Doha,et al. A NEW JACOBI OPERATIONAL MATRIX: AN APPLICATION FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS , 2012 .