Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides.

Low propagation loss Ge23Sb7S70 waveguides (0.56 dB/cm) are fabricated in a wafer scale process. Simulation of a 2 cm long, 1.2 μm wide waveguide with 100 ps/nm/km peak dispersion predicts coherent supercontinuum generation at 1.55 μm pump wavelength. Octave-spanning supercontinuum using a dispersive wave is experimentally demonstrated using picojoule-level energy (26 pJ, 240 fs pulse width, 77 W peak power) pulses.

[1]  Michel Couzi,et al.  Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S , 2006 .

[2]  Lionel C. Kimerling,et al.  Nonlinear characterization of GeSbS chalcogenide glass waveguides , 2016, Scientific Reports.

[3]  Anupama Yadav,et al.  Nonlinear optical properties of integrated GeSbS chalcogenide waveguides , 2018 .

[4]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[5]  T. Kippenberg,et al.  Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics , 2015, 1511.05716.

[6]  Wei Zhang,et al.  Low-loss photonic device in Ge-Sb-S chalcogenide glass. , 2016, Optics letters.

[7]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[8]  Ian Coddington,et al.  Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. , 2017, Optics letters.

[9]  S. Fathpour,et al.  Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching , 2015 .

[10]  Michael A. Paesler,et al.  Reversible photodarkening of amorphous arsenic chalcogens , 1991 .

[11]  Benjamin J Eggleton,et al.  Dispersive wave blue-shift in supercontinuum generation. , 2006, Optics express.

[12]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[13]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2017, Nature.

[14]  S. Fathpour,et al.  Amplified octave-spanning supercontinuum from chalcogenide waveguides for second-harmonic generation , 2017, 2017 IEEE Photonics Conference (IPC).

[15]  Ming Xin,et al.  Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm , 2017, Light: Science & Applications.

[16]  F. Smektala,et al.  Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy , 2016 .

[17]  Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[18]  A. Fercher,et al.  Optical coherence tomography - principles and applications , 2003 .

[19]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[20]  F. Smektala,et al.  Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses , 2015 .

[21]  Luke Theogarajan,et al.  An optical-frequency synthesizer using integrated photonics , 2018, Nature.

[22]  B. Soller,et al.  High resolution optical frequency domain reflectometry for characterization of components and assemblies. , 2005, Optics express.

[23]  Steve Madden,et al.  Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide. , 2008, Optics express.

[24]  Yi Yu,et al.  A broadband, quasi‐continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide , 2014 .

[25]  F. Wise,et al.  Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. , 2015, Optics letters.

[26]  Qing Li,et al.  Octave-spanning microcavity Kerr frequency combs with harmonic dispersive-wave emission on a silicon chip , 2015 .