Spin transfer torque generated magnetic droplet solitons (invited)

We present recent experimental and numerical advancements in the understanding of spin transfer torque generated magnetic droplet solitons. The experimental work focuses on nano-contact spin torque oscillators (NC-STOs) based on orthogonal (pseudo) spin valves where the Co fixed layer has an easy-plane anisotropy, and the [Co/Ni] free layer has a strong perpendicular magnetic anisotropy. The NC-STO resistance and microwave signal generation are measured simultaneously as a function of drive current and applied perpendicular magnetic field. Both exhibit dramatic transitions at a certain current dependent critical field value, where the microwave frequency drops 10 GHz, modulation sidebands appear, and the resistance exhibits a jump, while the magnetoresistance changes sign. We interpret these observations as the nucleation of a magnetic droplet soliton with a large fraction of its magnetization processing with an angle greater than 90°, i.e., around a direction opposite that of the applied field. This interpretation is corroborated by numerical simulations. When the field is further increased, we find that the droplet eventually collapses under the pressure from the Zeeman energy.

[1]  Anders Eklund,et al.  Magnetic droplet solitons in orthogonal nano-contact spin torque oscillators , 2014 .

[2]  J. Åkerman,et al.  Mutually synchronized bottom-up multi-nanocontact spin–torque oscillators , 2013, Nature Communications.

[3]  Johan Akerman,et al.  Microwave Signal Generation in Single-Layer Nano-Contact Spin Torque Oscillators , 2013, IEEE Transactions on Magnetics.

[4]  J. Åkerman,et al.  Spin wave excitations in exchange-coupled [Co/Pd]-NiFe films with tunable tilting of the magnetization , 2013 .

[5]  S. Bonetti,et al.  Spin-wave-mode coexistence on the nanoscale: a consequence of the Oersted-field-induced asymmetric energy landscape. , 2013, Physical review letters.

[6]  Johan Åkerman,et al.  Tunable spin configuration in [Co/Ni]-NiFe spring magnets , 2013 .

[7]  Ye. Pogoryelov,et al.  Spin Torque–Generated Magnetic Droplet Solitons , 2013, Science.

[8]  Johan Åkerman,et al.  (Co/Pd)4-Co-Pd-NiFe spring magnets with highly tunable and uniform magnetization tilt angles , 2012 .

[9]  J. Åkerman,et al.  Combined Wide-Narrow Double Modulation of Spin-Torque Oscillators for Improved Linewidth During Communication , 2012, IEEE Transactions on Magnetics.

[10]  S. Bonetti,et al.  Spin-Torque Oscillator in an Electromagnet Package , 2012, IEEE Transactions on Magnetics.

[11]  Sergei Urazhdin,et al.  Spin-torque nano-emitters for magnonic applications , 2012 .

[12]  Johan Akerman,et al.  Decoherence and mode hopping in a magnetic tunnel junction based spin torque oscillator. , 2012, Physical review letters.

[13]  Department of Physics,et al.  Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators , 2012, 1203.3244.

[14]  M. Sommacal,et al.  Propagation and control of nanoscale magnetic-droplet solitons , 2012, 1202.3421.

[15]  Johan AAkerman,et al.  Analytical investigation of modulated spin-torque oscillators in the framework of coupled differential equations with variable coefficients , 2012, 1202.3429.

[16]  Johan Åkerman,et al.  High frequency operation of a spin‐torque oscillator at low field , 2011 .

[17]  F. Mancoff,et al.  Direct observation of a propagating spin wave induced by spin-transfer torque. , 2011, Nature nanotechnology.

[18]  F. Mancoff,et al.  Modulation of Individual and Mutually Synchronized Nanocontact-Based Spin Torque Oscillators , 2011, IEEE Transactions on Magnetics.

[19]  Johan Åkerman,et al.  [Co/Pd]–NiFe exchange springs with tunable magnetization tilt angle , 2011 .

[20]  Ye. Pogoryelov,et al.  Spin-torque oscillator linewidth narrowing under current modulation , 2011, 1104.3167.

[21]  Johan AAkerman,et al.  Bias dependence of perpendicular spin torque and of free- and fixed-layer eigenmodes in MgO-based nanopillars , 2011, 1101.2401.

[22]  Yan Zhou,et al.  Spin Torque Oscillators and RF Currents—Modulation, Locking, and Ringing , 2011 .

[23]  Mark W. Keller,et al.  Theory for a dissipative droplet soliton excited by a spin torque nanocontact , 2010, 1008.1898.

[24]  Ye. Pogoryelov,et al.  Frequency modulation of spin torque oscillator pairs , 2010, 1007.2305.

[25]  W. Rippard,et al.  Spin-transfer dynamics in spin valves with out-of-plane magnetized CoNi free layers , 2009, 0911.4077.

[26]  Ye. Pogoryelov,et al.  Nonlinear frequency and amplitude modulation of a nanocontact-based spin-torque oscillator , 2009, 0910.2819.

[27]  Johan Akerman,et al.  Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. , 2009, Physical review letters.

[28]  T. Devolder,et al.  Quantized spin-wave modes in magnetic tunnel junction nanopillars , 2009, 0907.3792.

[29]  S. Bonetti,et al.  Pseudo spin valves based on L10 (111)-oriented FePt fixed layers with tilted anisotropy , 2009 .

[30]  V. Tiberkevich,et al.  Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current , 2009, IEEE Transactions on Magnetics.

[31]  D. Berkov,et al.  Spin-torque driven magnetization dynamics in a nanocontact setup for low external fields: Numerical simulation study , 2009, 0903.2416.

[32]  Johan Åkerman,et al.  Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz , 2009 .

[33]  G. Finocchio,et al.  Combined Frequency-Amplitude Nonlinear Modulation: Theory and Applications , 2009, IEEE Transactions on Magnetics.

[34]  Yan Zhou,et al.  Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer , 2008, 0809.2763.

[35]  Jordan A. Katine,et al.  Spin transfer induced coherent microwave emission with large power from nanoscale MgO tunnel junctions , 2008 .

[36]  Yan Zhou,et al.  Spin-torque oscillator with tilted fixed layer magnetization , 2008 .

[37]  W. Rippard,et al.  Developments in nano-oscillators based upon spin-transfer point-contact devices , 2008 .

[38]  S. Yuasa,et al.  Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices , 2008, 0803.2013.

[39]  G. Gerhart,et al.  Micromagnetic study of the above-threshold generation regime in a spin-torque oscillator based on a magnetic nanocontact magnetized at an arbitrary angle , 2008, 0803.0704.

[40]  Alexey V. Nazarov,et al.  Microwave generation in MgO magnetic tunnel junctions due to spin transfer effects (invited) , 2008 .

[41]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[42]  J. Miltat,et al.  Spin-torque driven magnetization dynamics : Micromagnetic modeling , 2007, 0710.5924.

[43]  P Crozat,et al.  Current-driven vortex oscillations in metallic nanocontacts. , 2007, Physical review letters.

[44]  M. D. Stiles,et al.  Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact , 2007, 0710.2890.

[45]  G. Gerhart,et al.  Excitation of self-localized spin-wave bullets by spin-polarized current in in-plane magnetized magnetic nanocontacts : A micromagnetic study , 2007, 0705.3750.

[46]  N. Gorn,et al.  Magnetization oscillations induced by a spin-polarized current in a point-contact geometry : Mode hopping and nonlinear damping effects , 2007, 0705.1515.

[47]  B. Diény,et al.  Spin-torque oscillator using a perpendicular polarizer and a planar free layer. , 2007, Nature materials.

[48]  Paul Crozat,et al.  Spin transfer oscillators emitting microwave in zero applied magnetic field , 2007 .

[49]  W. Rippard,et al.  Low-field current-hysteretic oscillations in spin-transfer nanocontacts , 2007, cond-mat/0702416.

[50]  D. Ralph,et al.  Magnetic vortex oscillator driven by d.c. spin-polarized current , 2007, cond-mat/0702253.

[51]  Teruo Ono,et al.  Current-driven resonant excitation of magnetic vortices. , 2006, Physical review letters.

[52]  Andrei Slavin,et al.  Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. , 2005, Physical review letters.

[53]  B. N. Engel,et al.  Phase-locking in double-point-contact spin-transfer devices , 2005, Nature.

[54]  J. Katine,et al.  Mutual phase-locking of microwave spin torque nano-oscillators , 2005, Nature.

[55]  W. Rippard,et al.  Frequency modulation of spin-transfer oscillators , 2004, cond-mat/0411114.

[56]  W. Rippard,et al.  Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle , 2004, cond-mat/0405558.

[57]  D. Ralph,et al.  Microwave oscillations of a nanomagnet driven by a spin-polarized current , 2003, Nature.

[58]  William H. Rippard,et al.  Quantitative studies of spin-momentum-transfer-induced excitations in Co/Cu multilayer films using point-contact spectroscopy , 2003 .

[59]  J. Bass,et al.  Generation and detection of phase-coherent current-driven magnons in magnetic multilayers , 2000, Nature.

[60]  John Casimir Slonczewski,et al.  Excitation of spin waves by an electric current , 1999 .

[61]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[62]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[63]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[64]  Joo-Von Kim Spin-Torque Oscillators , 2012 .