Physical content of Heisenberg's uncertainty relation: limitation and reformulation

Heisenberg's reciprocal relation between position measurement error and momentum disturbance is rigorously proven under the assumption that those error and disturbance are independent of the state of the measured object. A generalization of Heisenberg's relation proven valid for arbitrary measurements is proposed and reveals two distinct types of possible violations of Heisenberg's relation.

[1]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[2]  Concept of Experimental Accuracy and Simultaneous Measurements of Position and Momentum , 1998, quant-ph/9803046.

[3]  Horace P. Yuen,et al.  Contractive states and the standard quantum limit for monitoring free-mass positions , 1983 .

[4]  Ozawa Measurement breaking the standard quantum limit for free-mass position. , 1988, Physical review letters.

[5]  Shiro Ishikawa,et al.  Uncertainty relations in simultaneous measurements for arbitrary observables , 1991 .

[6]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[7]  E. B. Davies Quantum theory of open systems , 1976 .

[8]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[9]  M. Ozawa Quantum measuring processes of continuous observables , 1984 .

[10]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[11]  John Maddox Beating the quantum limits (cont'd) , 1988, Nature.

[12]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[13]  Leslie E Ballentine,et al.  The statistical interpretation of quantum mechanics , 1970 .

[14]  W. D. Muynck,et al.  The inaccuracy principle , 1990 .

[15]  Goodman,et al.  Quantum correlations: A generalized Heisenberg uncertainty relation. , 1988, Physical review letters.

[16]  A. Galindo,et al.  Quantum Mechanics I , 1990 .

[17]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[18]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[19]  Masanao Ozawa Position measuring interactions and the Heisenberg uncertainty principle , 2002 .

[20]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[21]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[22]  N. Bohr The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.

[23]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[24]  W. D. Muynck,et al.  Disturbance, conservation laws and the uncertainty principle , 1992 .

[25]  M. Ozawa Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement , 2002, quant-ph/0207121.

[26]  C. Caves,et al.  Defense of the standard quantum limit for free-mass position. , 1985, Physical review letters.

[27]  Vladimir B. Braginsky,et al.  Quantum Nondemolition Measurements , 1980, Science.

[28]  H. Jehle,et al.  Albert Einstein: Philosopher-Scientist. , 1951 .

[29]  H. P. Robertson The Uncertainty Principle , 1929 .

[30]  Ozawa Quantum-mechanical models of position measurements. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[31]  Controlling quantum state reductions , 1998, quant-ph/9805033.

[32]  Arthur I. Miller Sixty-Two Years of Uncertainty , 1990 .

[33]  Osamu Hirota,et al.  "Quantum Communication, Computing, and Measurement" , 2012 .

[34]  A. Messiah Quantum Mechanics , 1961 .

[35]  J. Maddox Maintaining the balance , 1988, Nature.