Mendelian randomisation analyses find pulmonary factors mediate the effect of height on coronary artery disease

[1]  Stephen Burgess,et al.  MendelianRandomization v0.5.0: updates to an R package for performing Mendelian randomization analyses using summarized data , 2020, Wellcome open research.

[2]  N. Samani,et al.  Adult height and risk of 50 diseases: a combined epidemiological and genetic analysis , 2018, BMC Medicine.

[3]  Christian Gieger,et al.  Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits , 2018, Nature Genetics.

[4]  T. Sofer,et al.  Relationship of genetic determinants of height with cardiometabolic and pulmonary traits in the Hispanic Community Health Study/Study of Latinos. , 2018, International journal of epidemiology.

[5]  D. Lawlor,et al.  Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption , 2018, bioRxiv.

[6]  B. Neale,et al.  Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases , 2018, Nature Genetics.

[7]  P. Koellinger,et al.  Genetic instrumental variable regression: Explaining socioeconomic and health outcomes in nonexperimental data , 2017, Proceedings of the National Academy of Sciences.

[8]  R. Johnstone,et al.  Evolutionary public health: introducing the concept , 2017, The Lancet.

[9]  Robert M. Maier,et al.  Causal associations between risk factors and common diseases inferred from GWAS summary data , 2017, Nature Communications.

[10]  J. Danesh,et al.  Association analyses based on false discovery rate implicate new loci for coronary artery disease , 2017, Nature Genetics.

[11]  Fernando Pires Hartwig,et al.  Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption , 2017, bioRxiv.

[12]  Jessica M B Rees,et al.  Dissecting Causal Pathways Using Mendelian Randomization with Summarized Genetic Data: Application to Age at Menarche and Risk of Breast Cancer , 2017, Genetics.

[13]  David M. Evans,et al.  Collider scope: when selection bias can substantially influence observed associations , 2016, bioRxiv.

[14]  J. Eriksson,et al.  The shorter the person, the higher the blood pressure: a birth cohort study , 2017, Journal of hypertension.

[15]  Tanya M. Teslovich,et al.  An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans , 2017, Diabetes.

[16]  Olena O Yavorska,et al.  MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data , 2017, International journal of epidemiology.

[17]  K. Fischer,et al.  Education and coronary heart disease: mendelian randomisation study , 2017, British Medical Journal.

[18]  N. Sheehan,et al.  A framework for the investigation of pleiotropy in two‐sample summary data Mendelian randomization , 2017, Statistics in medicine.

[19]  Marcelo P. Segura-Lepe,et al.  Rare and low-frequency coding variants alter human adult height , 2016, Nature.

[20]  Dylan S. Small,et al.  A review of instrumental variable estimators for Mendelian randomization , 2015, Statistical methods in medical research.

[21]  F. Hu,et al.  Divergent associations of height with cardiometabolic disease and cancer: epidemiology, pathophysiology, and global implications. , 2016, The lancet. Diabetes & endocrinology.

[22]  G. Davey Smith,et al.  Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.

[23]  Samuel E. Jones,et al.  Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank , 2016, British Medical Journal.

[24]  Tom R. Gaunt,et al.  Adult height, coronary heart disease and stroke: a multi-locus Mendelian randomization meta-analysis , 2015, International journal of epidemiology.

[25]  Nuala A Sheehan,et al.  Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome , 2015, Statistics in medicine.

[26]  J. Danesh,et al.  Genetically determined height and coronary artery disease. , 2015, The New England journal of medicine.

[27]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[28]  F. Dudbridge,et al.  Re: "Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects". , 2015, American journal of epidemiology.

[29]  S. Thompson,et al.  Multivariable Mendelian Randomization: The Use of Pleiotropic Genetic Variants to Estimate Causal Effects , 2015, American journal of epidemiology.

[30]  A. Butterworth,et al.  Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways , 2014, International journal of epidemiology.

[31]  Ross M. Fraser,et al.  Defining the role of common variation in the genomic and biological architecture of adult human height , 2014, Nature Genetics.

[32]  P. Visscher,et al.  Calculating statistical power in Mendelian randomization studies. , 2013, International journal of epidemiology.

[33]  A. Butterworth,et al.  Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data , 2013, Genetic epidemiology.

[34]  Tom M Palmer,et al.  Severity of bias of a simple estimator of the causal odds ratio in Mendelian randomization studies , 2013, Statistics in medicine.

[35]  K. W. Davidson,et al.  Adult height and the risk of cause-specific death and vascular morbidity in 1 million people: individual participant meta-analysis. , 2012, International journal of epidemiology.

[36]  George Davey Smith,et al.  Using multiple genetic variants as instrumental variables for modifiable risk factors , 2012, Statistical methods in medical research.

[37]  R. Collins What makes UK Biobank special? , 2012, The Lancet.

[38]  M. Janghorbani,et al.  Associations of hip circumference and height with incidence of type 2 diabetes: the Isfahan diabetes prevention study , 2012, Acta Diabetologica.

[39]  D. Lawlor,et al.  American Journal of Epidemiology Practice of Epidemiology Instrumental Variable Estimation of Causal Risk Ratios and Causal Odds Ratios in Mendelian Randomization Analyses , 2022 .

[40]  Jonathan E. Dickerson,et al.  Supplementary webappendix , 2018 .

[41]  Eric Boerwinkle,et al.  The Atherosclerosis Risk in Communities (ARIC) Study , 2011 .

[42]  J. Pankow,et al.  Association of a Fasting Glucose Genetic Risk Score With Subclinical Atherosclerosis , 2010, Diabetes.

[43]  George Davey Smith,et al.  Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology , 2008, Statistics in medicine.

[44]  Nicholas J White Introducing the Concept , 2008 .

[45]  B. Team British Women's Heart and Health Study: Data and study instruments , 2008 .

[46]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[47]  M. McKee,et al.  Endocrine Regulation of Energy Metabolism by the Skeleton , 2007, Cell.

[48]  Ken R. Smith,et al.  Differential fitness costs of reproduction between the sexes , 2007, Proceedings of the National Academy of Sciences.

[49]  T. Samaras Re: "association between height and coronary heart disease mortality: a prospective study of 35,000 twin pairs". , 2006, American journal of epidemiology.

[50]  E. Ribeiro,et al.  Angiographic Segment Size in Patients Referred for Coronary Intervention is Influenced by Constitutional, Anatomical, and Clinical Features , 2007, The International Journal of Cardiovascular Imaging.

[51]  J. Kaprio,et al.  Association between height and coronary heart disease mortality: a prospective study of 35,000 twin pairs. , 2006, American journal of epidemiology.

[52]  L. Storms,et al.  Is short height really a risk factor for coronary heart disease and stroke mortality? A review. , 2004, Medical science monitor : international medical journal of experimental and clinical research.

[53]  P. Serruys,et al.  Clinical and Angiographic Predictors of Restenosis After Stent Deployment in Diabetic Patients , 2004, Circulation.

[54]  G. Watt,et al.  Associations of height, leg length, and lung function with cardiovascular risk factors in the Midspan Family Study , 2003, Journal of epidemiology and community health.

[55]  D. Lawlor,et al.  The association between components of adult height and Type II diabetes and insulin resistance: British Women's Heart and Health Study , 2002, Diabetologia.

[56]  E. Martin,et al.  An approximation to the F distribution using the chi-square distribution , 2002 .

[57]  Graham Watt,et al.  Height and risk of death among men and women: aetiological implications of associations with cardiorespiratory disease and cancer mortality , 2000, Journal of epidemiology and community health.

[58]  T. Särkioja,et al.  Coronary atherosclerosis associated with body structure and obesity in 599 women aged between 15 and 50 years , 1999, International Journal of Obesity.

[59]  G. Shaw,et al.  Maternal pesticide exposure from multiple sources and selected congenital anomalies. , 1999 .

[60]  J. Pearl,et al.  Causal diagrams for epidemiologic research. , 1999, Epidemiology.

[61]  M. Safar,et al.  Influence of body height on pulsatile arterial hemodynamic data. , 1998, Journal of the American College of Cardiology.

[62]  A. J. Noordwijk,et al.  Acquisition and Allocation of Resources: Genetic (CO) Variances, Selection, and Life Histories , 1992, The American Naturalist.

[63]  Sander Greenland,et al.  Modern Epidemiology 3rd edition , 1986 .

[64]  F. Hole The Europeans , 1983, Nature.

[65]  O. Miettinen,et al.  Confounding and effect-modification. , 1974, American journal of epidemiology.