The sodium exosphere of Mercury: Comparison between observations during Mercury's transit and model results

Abstract In this study we compare the sodium exosphere observations made by Schleicher et al. [Schleicher, H., and 4 colleagues, 2004. Astron. Astrophys. 425, 1119–1124] with the result of a detailed numerical simulation. The observations, made during the transit of Mercury across the solar disk on 7 May 2003, show a maximum of sodium emission near the polar regions, with north prevalence, and the presence of a dawn–dusk asymmetry. We interpret this distribution as the resulting effect of two combined processes: the solar wind proton precipitation causing chemical alteration of the surface, freeing the sodium atoms from their bounds in the crystalline structure on the surface, and the subsequent photon-stimulated and thermal desorption of the sodium atoms. While we find that the velocity distribution of photon desorbed sodium can explain the observed exosphere population, thermal desorption seems to play a minor role only causing a smearing at the locations where Na atoms are released on the dayside. The observed and simulated distributions agree very well with this hypothesis and indicate that the combination of the proposed processes is able to explain the observed features.

[1]  A. Sharma,et al.  Influence of plasma ions on source rates for the lunar exosphere during passage through the Earth's magnetosphere , 2008 .

[2]  Manish R. Patel,et al.  The variability of Mercury's exosphere by particle and radiation induced surface release processes , 2003 .

[3]  A. Potter,et al.  Evidence for suprathermal sodium on Mercury , 1997 .

[4]  R. E. Johnson,et al.  Sputtering of sodium on the planet Mercury , 1986, Nature.

[5]  Bernard V. Jackson,et al.  Evidence for space weather at Mercury , 2001 .

[6]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[7]  A. Potter,et al.  Sodium and potassium atmospheres of Mercury , 1997 .

[8]  R. Killen,et al.  Source rates and ion recycling rates for Na and K in Mercury's atmosphere , 2004 .

[9]  Mark J. Cintala,et al.  Impact‐induced thermal effects in the lunar and Mercurian regoliths , 1992 .

[10]  A. Milillo,et al.  Numerical and analytical model of Mercury's exosphere: Dependence on surface and external conditions , 2007 .

[11]  François Leblanc,et al.  Mercury's sodium exosphere , 2003 .

[12]  Theodore E. Madey,et al.  Desorption of alkali atoms and ions from oxide surfaces: Relevance to origins of Na and K in atmospheres of Mercury and the Moon , 1998 .

[13]  Donald S. Burnett,et al.  Lunar surface processes , 1992 .

[14]  A. Milillo,et al.  Dayside H+ circulation at Mercury and neutral particle emission , 2005 .

[15]  A. Milillo,et al.  The contribution of impulsive meteoritic impact vapourization to the Hermean exosphere , 2007 .

[16]  T. Madey,et al.  Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere , 1999, Nature.

[17]  W. Smyth,et al.  The Sodium and Potassium Atmospheres of the Moon , 1995 .

[18]  A. Fitzsimmons,et al.  Sodium D2 line profiles: clues to the temperature structure of Mercury’s exosphere , 1999 .

[19]  A. Sprague Mercury's atmospheric bright spots and potassium variations: A possible cause , 1992 .

[20]  A. L. Broadfoot,et al.  Mariner 10 - Mercury atmosphere , 1976 .

[21]  Helmut Lammer,et al.  Monte-Carlo simulation of Mercury's exosphere , 2003 .

[22]  Faith Vilas,et al.  Surface composition of Mercury from reflectance spectrophotometry , 1988 .

[23]  T. Hill,et al.  A Bx-interconnected magnetosphere model for Mercury , 2001 .

[24]  G. Gloeckler,et al.  MESSENGER Observations of the Composition of Mercury's Ionized Exosphere and Plasma Environment , 2008, Science.

[25]  A. Potter,et al.  Impact-driven supply of sodium and potassium to the atmosphere of Mercury , 1987 .

[26]  T. Madey,et al.  Photon-stimulated desorption of Na from a lunar sample: temperature-dependent effects , 2004 .

[27]  L. Friesen,et al.  A simple model of the magnetosphere , 1979 .

[28]  G. Betz,et al.  Energy and angular distributions of sputtered particles , 1994 .

[29]  R. Killen,et al.  The sodium tail of Mercury , 2002 .

[30]  Theodore E. Madey,et al.  THERMAL DESORPTION OF SODIUM ATOMS FROM THIN SiO2 Films , 2000 .

[31]  Donald M. Hunten,et al.  The Mercury atmosphere , 1988 .

[32]  T. Berkefeld,et al.  Detection of neutral sodium above Mercury during the transit on 2003 May 7 , 2004 .

[33]  Thomas E. Moore,et al.  A quantitative model of the planetary Na + contribution to Mercury’s magnetosphere , 2003 .

[34]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[35]  R. Killen,et al.  Observations of the sodium tail of Mercury , 2008 .

[36]  Robert E. Johnson,et al.  Lunar surface: Sputtering and secondary ion mass spectrometry , 1991 .

[37]  A. Potter Chemical sputtering could produce sodium vapor and ice on Mercury , 1995 .

[38]  U. Rohner,et al.  The lunar exosphere: The sputtering contribution , 2007 .

[39]  F. Leblanc,et al.  Energy Distributions for Desorption of Sodium and Potassium from Ice: The Na/K Ratio at Europa , 2002 .

[40]  Pekka Janhunen,et al.  Solar wind and magnetospheric ion impact on Mercury's surface , 2003 .

[41]  A. Potter,et al.  Discovery of Sodium in the Atmosphere of Mercury , 1985, Science.

[42]  Maxim L. Khodachenko,et al.  Processes that Promote and Deplete the Exosphere of Mercury , 2007 .

[43]  S. Solomon,et al.  Mercury's Exosphere: Observations During MESSENGER's First Mercury Flyby , 2008, Science.

[44]  D. Hunten,et al.  Origin and character of the lunar and mercurian atmospheres , 1997 .