Stochastic aspects and uncertainties in the prechemical and chemical stages of electron tracks in liquid water: a quantitative analysis based on Monte Carlo simulations

[1]  D. Goodhead,et al.  Comparison and assessment of electron cross sections for Monte Carlo track structure codes. , 1999, Radiation research.

[2]  F Ballarini,et al.  Modelling radiation-induced biological lesions: from initial energy depositions to chromosome aberrations , 1999, Radiation and environmental biophysics.

[3]  Herwig G. Paretzke,et al.  Electron inelastic-scattering cross sections in liquid water , 1999 .

[4]  A Ottolenghi,et al.  Chromosome aberrations induced by light ions: Monte Carlo simulations based on a mechanistic model. , 1999, International journal of radiation biology.

[5]  H. Paretzke,et al.  Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models. , 1998, Radiation research.

[6]  S. Pimblott,et al.  Effect of electron energy on the radiation chemistry of liquid water. , 1998, Radiation research.

[7]  T. Goulet,et al.  Monte Carlo simulation of fast electron and proton tracks in liquid water -- II. nonhomogeneous chemistry , 1998 .

[8]  T. Goulet,et al.  Monte Carlo simulation of fast electron and proton tracks in liquid water -- I. physical and physicochemical aspects , 1998 .

[9]  M G Stabin,et al.  Monte Carlo simulation of diffusion and reaction in water radiolysis – a study of reactant `jump through' and jump distances , 1998, Radiation and environmental biophysics.

[10]  P O'Neill,et al.  Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events. , 1997, International journal of radiation biology.

[11]  A Ottolenghi,et al.  A Monte Carlo calculation of cell inactivation by light ions. , 1997, International journal of radiation biology.

[12]  V. Cobut,et al.  Rôle des distances de thermalisation des électrons dans la radiolyse de l’eau liquide , 1996 .

[13]  Jean-Paul Jay-Gerin,et al.  Evolution des espèces produites par le ralentissement de protons rapides dans l'eau liquide : simulation fondée sur l'approximation des temps de réaction indépendants , 1996 .

[14]  D T Goodhead,et al.  Molecular and cell models of biological effects of heavy ion radiation , 1995, Radiation and environmental biophysics.

[15]  J. Turner,et al.  Track Structure Simulation and Determination of Product Yields in the Electron Radiolysis of Water Containing Various Solutes , 1994 .

[16]  F. A. Smith,et al.  Calculation of initial and primary yields in the radiolysis of water , 1994 .

[17]  R. H. Ritchie,et al.  Interactions of Low-Energy Electrons with Condensed Matter: Relevance for Track Structure , 1994 .

[18]  W E Bolch,et al.  Monte Carlo track-structure calculations for aqueous solutions containing biomolecules. , 1994, Basic life sciences.

[19]  S. Pimblott,et al.  Molecular product formation in the electron radiolysis of water. , 1992, Radiation research.

[20]  Simon M. Pimblott,et al.  Scavenger and time dependences of radicals and molecular products in the electron radiolysis of water : examination of experiments and models , 1991 .

[21]  A. Beaudré,et al.  Simulation of Space and Time Evolution of Radiolytic Species Induced by Electrons in Water , 1990 .

[22]  T. Goulet,et al.  Thermalization distances and times for subexcitation electrons in solid water , 1988 .

[23]  G. Buxton,et al.  Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution , 1988 .

[24]  Wesley E. Bolch,et al.  Studies to link the basic radiation physics and chemistry of liquid water , 1988 .

[25]  M. Washio,et al.  Pulse-radiolysis study on the yield of hydrated electron at elevated temperatures , 1988 .

[26]  Y. Tsvetkov,et al.  Thermalization lengths of “subexcitation electrons” in water determined by photoinjection from metals into electrolyte solutions , 1988 .

[27]  Michaud,et al.  Absolute vibrational excitation cross sections for slow-electron (1-18 eV) scattering in solid H2O. , 1987, Physical review. A, General physics.

[28]  M. Zaider,et al.  On the stochastic treatment of fast chemical reactions. , 1984, Radiation research.

[29]  James E. Turner,et al.  Physical and Chemical Development of Electron Tracks in Liquid Water , 1983 .

[30]  John R. Miller,et al.  Yield and decay of the hydrated electron from 100 ps to 3 ns , 1976 .

[31]  E. Hart,et al.  Yields and decay of the hydrated electron at times greater than 200 picoseconds , 1973 .

[32]  G. Buxton Nanosecond pulse radiolysis of aqueous solutions containing proton and hydroxyl radical scavengers , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  H. Schwarz Applications of the spur diffusion model to the radiation chemistry of aqueous solutions , 1969 .

[34]  Richard M. Noyes,et al.  Effects of diffusion rates on chemical kinetics , 1961 .