Regulation of the Chlamydia trachomatis Histone H1-Like Protein Hc2 Is IspE Dependent and IhtA Independent

ABSTRACT The chlamydial histone-like proteins, Hc1 and Hc2, function as global regulators of chromatin structure and gene expression. Hc1 and Hc2 expression and activity are developmentally regulated. A small metabolite that disrupts Hc1 interaction with DNA also disrupts Hc2 interactions; however, the small regulatory RNA that inhibits Hc1 translation is specific to Hc1.

[1]  T. Hackstadt,et al.  A small RNA inhibits translation of the histone‐like protein Hc1 in Chlamydia trachomatis , 2006, Molecular microbiology.

[2]  B. Barrell,et al.  The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. , 2005, Genome research.

[3]  T. Hackstadt,et al.  Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  G. Zhong,et al.  Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Salzberg,et al.  Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. , 2003, Nucleic acids research.

[6]  M. Srinivasan,et al.  Corneal blindness: a global perspective. , 2001, Bulletin of the World Health Organization.

[7]  T. Hackstadt,et al.  Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle , 2000, Molecular microbiology.

[8]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[9]  GLOBAL PREVALENCE AND INCIDENCE OF SELECTED CURABLE SEXUALLY TRANSMITTED DISEASES: OVERVIEW AND ESTIMATES , 2000 .

[10]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[11]  S. Birkelund,et al.  Purification of recombinant Chlamydia trachomatis histone H1‐like protein Hc2, and comparative functional analysis of Hc2 and Hc1 , 1996, Molecular microbiology.

[12]  S. Birkelund,et al.  Interaction of the Chlamydia trachomatis histone H1‐like protein (Hc1) with DNA and RNA causes repression of transcription and translation in vitro , 1994, Molecular microbiology.

[13]  T. Hackstadt,et al.  Diversity in the Chlamydia trachomatis histone homologue Hc2. , 1993, Gene.

[14]  T. Hackstadt,et al.  Hc1‐mediated effects on DNA structure: a potential regulator of chlamydial development , 1993, Molecular microbiology.

[15]  T. Hackstadt,et al.  Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity , 1993, Journal of bacteriology.

[16]  T. Hackstadt,et al.  Nucleoid Condensation in Escherichia coli That Express a Chlamydial Histone Homolog , 1992, Science.

[17]  J. Engel,et al.  A developmentally regulated chlamydial gene with apparent homology to eukaryotic histone H1. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. Hackstadt,et al.  Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Wenman,et al.  Identification and nucleotide sequence of a developmentally regulated gene encoding a eukaryotic histone H1-like protein from Chlamydia trachomatis , 1991, Journal of bacteriology.

[20]  J. Moulder Interaction of chlamydiae and host cells in vitro. , 1991, Microbiological reviews.