A Delaunay Triangulation Approach to Space Information Flow
暂无分享,去创建一个
[1] Rudolf Ahlswede,et al. Network information flow , 2000, IEEE Trans. Inf. Theory.
[2] D. T. Lee,et al. An O(n log n) heuristic for steiner minimal tree problems on the euclidean metric , 1981, Networks.
[3] Christina Fragouli,et al. Information flow decomposition for network coding , 2006, IEEE Transactions on Information Theory.
[4] Zongpeng Li,et al. A recursive partitioning algorithm for space information flow , 2014, 2014 IEEE Global Communications Conference.
[5] Zongpeng Li,et al. Space information flow: Multiple unicast , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[6] R. S. Booth,et al. Steiner minimal trees for a class of zigzag lines , 1992, Algorithmica.
[7] H. Pollak,et al. Steiner Minimal Trees , 1968 .
[8] Xin Wang,et al. Min-cost multicast networks in Euclidean space , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[9] Martin Zachariasen,et al. Euclidean Steiner minimum trees: An improved exact algorithm , 1997 .
[10] Zongpeng Li,et al. Min-Cost Multicast of Selfish Information Flows , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.
[11] John E. Beasley,et al. OR-Library: Distributing Test Problems by Electronic Mail , 1990 .
[12] Xu Du,et al. On Space Information Flow: Single multicast , 2013, 2013 International Symposium on Network Coding (NetCod).
[13] Berthold Vöcking,et al. Worst Case and Probabilistic Analysis of the 2-Opt Algorithm for the TSP , 2007, SODA '07.
[14] Zongpeng Li,et al. A Geometric Perspective to Multiple-Unicast Network Coding , 2014, IEEE Transactions on Information Theory.