Phase and amplitude inversion of crosswell radar data
暂无分享,去创建一个
[1] Henri Calandra,et al. First-arrival traveltime tomography based on the adjoint-state method , 2009 .
[2] John W. Lane,et al. USE OF BOREHOLE-RADAR METHODS TO MONITOR THE MOVEMENT OF A SALINE TRACER IN CARBONATE ROCK AT BELVIDERE, ILLINOIS , 1998 .
[3] Gerard T. Schuster,et al. Resolution limits for crosswell migration and traveltime tomography , 1996 .
[4] M. Toksöz,et al. Diffraction tomography and multisource holography applied to seismic imaging , 1987 .
[5] G. Masters,et al. Global P and PP traveltime tomography: rays versus waves , 2004 .
[6] M. Toksöz,et al. Simultaneous reconstruction of permittivity and conductivity for crosshole geometries , 1990 .
[7] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[8] B. Peters,et al. High-Frequency, Crosswell Radar Data Collected in a Laboratory Tank , 2010 .
[9] Klaus Holliger,et al. Inversion of crosshole seismic data in heterogeneous environments: Comparison of waveform and ray-based approaches , 2009 .
[10] Vlastislav Cerveny,et al. Fresnel volume ray tracing , 1992 .
[11] P. Mora. Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .
[12] Partha S. Routh,et al. Crosshole radar velocity tomography with finite-frequency Fresnel volume sensitivities , 2008 .
[13] A. Green,et al. Characterization of an unstable rock mass based on borehole logs and diverse borehole radar data , 2007 .
[14] S Carlsten,et al. Borehole radar measurements aid structure geological interpretations , 2000 .
[15] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[16] W. Rodi. A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .
[17] Ronold W. P. King,et al. Antennas in Matter: Fundamentals, Theory, and Applications , 1981 .
[18] C. Bunks,et al. Multiscale seismic waveform inversion , 1995 .
[19] Ping Zhang,et al. A Fast And Rigorous 2.5D Inversion Algorithm For Cross-well Electromagnetic Data , 2005 .
[20] H. Maurer,et al. Ray-based amplitude tomography for crosshole georadar data: a numerical assessment , 2001 .
[21] Jeffrey W. Roberts,et al. Estimation of permeable pathways and water content using tomographic radar data , 1997 .
[22] F. Paillet,et al. 12. Downhole Applications of Geophysics , 2005 .
[23] W. Scott,et al. Accurate computation of the radiation from simple antennas using the finite-difference time-domain method , 1989, Digest on Antennas and Propagation Society International Symposium.
[24] Karl J. Ellefsen,et al. A comparison of phase inversion and traveltime tomography for processing near-surface refraction traveltimes , 2009 .
[25] M. Chouteau,et al. Massive sulphide delineation using borehole radar: tests at the McConnell nickel deposit, Sudbury, Ontario , 2001 .
[26] Application of Anisotropic Georadar Tomography to Monitor Rock Physical Property Changes , 1999 .
[27] Jean Virieux,et al. An overview of full-waveform inversion in exploration geophysics , 2009 .
[28] Jacques R. Ernst,et al. Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data , 2007 .
[29] R. Pratt,et al. Short Note A critical review of acoustic wave modeling procedures in 2.5 dimensions , 1995 .
[30] P. Routh,et al. Fresnel volume georadar attenuation‐difference tomography , 2005 .
[31] M. Bouchon. A Review of the Discrete Wavenumber Method , 2003 .
[32] K. Ellefsen,et al. Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media , 2009 .
[33] Hicks,et al. Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .
[34] Partha S. Routh,et al. A field comparison of Fresnel zone and ray-based GPR attenuation-difference tomography for time-lapse imaging of electrically anomalous tracer or contaminant plumes , 2007 .
[35] J. Scales,et al. Robust methods in inverse theory , 1988 .
[36] S. Kuroda,et al. Full Waveform Inversion Algorithm For Interpreting Cross-borehole GPR Data , 2005 .
[37] Guust Nolet,et al. Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox , 1999 .
[38] M. Oristaglio,et al. INVERSION OF SURFACE AND BOREHOLE ELECTROMAGNETIC DATA FOR TWO‐DIMENSIONAL ELECTRICAL CONDUCTIVITY MODELS* , 1980 .
[39] John E. Peterson,et al. Beyond ray tomography: Wavepaths and Fresnel volumes , 1995 .
[40] Jacques R. Ernst,et al. Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell's Equations , 2007, IEEE Transactions on Geoscience and Remote Sensing.