Phase and amplitude inversion of crosswell radar data

Phase and amplitude inversion of crosswell radar data estimates the logarithm of complex slowness for a 2.5D heterogeneous model. The inversion is formulated in the frequency domain using the vector Helmholtz equation. The objective function is minimized using a back-propagation method that is suitable for a 2.5D model and that accounts for the near-, intermediate-, and far-field regions of the antennas. The inversion is tested with crosswell radar data collected in a laboratory tank. The model anomalies are consistent with the known heterogeneity in the tank; the model's relative dielectric permittivity, which is calculated from the real part of the estimated complex slowness, is consistent with independent laboratory measurements. The methodologies developed for this inversion can be adapted readily to inversions of seismic data (e.g., crosswell seismic and vertical seismic profiling data).

[1]  Henri Calandra,et al.  First-arrival traveltime tomography based on the adjoint-state method , 2009 .

[2]  John W. Lane,et al.  USE OF BOREHOLE-RADAR METHODS TO MONITOR THE MOVEMENT OF A SALINE TRACER IN CARBONATE ROCK AT BELVIDERE, ILLINOIS , 1998 .

[3]  Gerard T. Schuster,et al.  Resolution limits for crosswell migration and traveltime tomography , 1996 .

[4]  M. Toksöz,et al.  Diffraction tomography and multisource holography applied to seismic imaging , 1987 .

[5]  G. Masters,et al.  Global P and PP traveltime tomography: rays versus waves , 2004 .

[6]  M. Toksöz,et al.  Simultaneous reconstruction of permittivity and conductivity for crosshole geometries , 1990 .

[7]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[8]  B. Peters,et al.  High-Frequency, Crosswell Radar Data Collected in a Laboratory Tank , 2010 .

[9]  Klaus Holliger,et al.  Inversion of crosshole seismic data in heterogeneous environments: Comparison of waveform and ray-based approaches , 2009 .

[10]  Vlastislav Cerveny,et al.  Fresnel volume ray tracing , 1992 .

[11]  P. Mora Nonlinear two-dimensional elastic inversion of multioffset seismic data , 1987 .

[12]  Partha S. Routh,et al.  Crosshole radar velocity tomography with finite-frequency Fresnel volume sensitivities , 2008 .

[13]  A. Green,et al.  Characterization of an unstable rock mass based on borehole logs and diverse borehole radar data , 2007 .

[14]  S Carlsten,et al.  Borehole radar measurements aid structure geological interpretations , 2000 .

[15]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[16]  W. Rodi A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data , 1976 .

[17]  Ronold W. P. King,et al.  Antennas in Matter: Fundamentals, Theory, and Applications , 1981 .

[18]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[19]  Ping Zhang,et al.  A Fast And Rigorous 2.5D Inversion Algorithm For Cross-well Electromagnetic Data , 2005 .

[20]  H. Maurer,et al.  Ray-based amplitude tomography for crosshole georadar data: a numerical assessment , 2001 .

[21]  Jeffrey W. Roberts,et al.  Estimation of permeable pathways and water content using tomographic radar data , 1997 .

[22]  F. Paillet,et al.  12. Downhole Applications of Geophysics , 2005 .

[23]  W. Scott,et al.  Accurate computation of the radiation from simple antennas using the finite-difference time-domain method , 1989, Digest on Antennas and Propagation Society International Symposium.

[24]  Karl J. Ellefsen,et al.  A comparison of phase inversion and traveltime tomography for processing near-surface refraction traveltimes , 2009 .

[25]  M. Chouteau,et al.  Massive sulphide delineation using borehole radar: tests at the McConnell nickel deposit, Sudbury, Ontario , 2001 .

[26]  Application of Anisotropic Georadar Tomography to Monitor Rock Physical Property Changes , 1999 .

[27]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[28]  Jacques R. Ernst,et al.  Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data , 2007 .

[29]  R. Pratt,et al.  Short Note A critical review of acoustic wave modeling procedures in 2.5 dimensions , 1995 .

[30]  P. Routh,et al.  Fresnel volume georadar attenuation‐difference tomography , 2005 .

[31]  M. Bouchon A Review of the Discrete Wavenumber Method , 2003 .

[32]  K. Ellefsen,et al.  Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media , 2009 .

[33]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[34]  Partha S. Routh,et al.  A field comparison of Fresnel zone and ray-based GPR attenuation-difference tomography for time-lapse imaging of electrically anomalous tracer or contaminant plumes , 2007 .

[35]  J. Scales,et al.  Robust methods in inverse theory , 1988 .

[36]  S. Kuroda,et al.  Full Waveform Inversion Algorithm For Interpreting Cross-borehole GPR Data , 2005 .

[37]  Guust Nolet,et al.  Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana–doughnut paradox , 1999 .

[38]  M. Oristaglio,et al.  INVERSION OF SURFACE AND BOREHOLE ELECTROMAGNETIC DATA FOR TWO‐DIMENSIONAL ELECTRICAL CONDUCTIVITY MODELS* , 1980 .

[39]  John E. Peterson,et al.  Beyond ray tomography: Wavepaths and Fresnel volumes , 1995 .

[40]  Jacques R. Ernst,et al.  Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell's Equations , 2007, IEEE Transactions on Geoscience and Remote Sensing.