A novel composite multi-layer piezoelectric energy harvester

Abstract A typical linear piezoelectric energy harvester (PEH) is represented by a unimorph or bimorph cantilever beam. To improve the efficiency of linear PEHs, classical strategies involve the increase of the beam length, tapering or adding additional cantilever beams to the free end. In this work we discuss the design of novel type of composite linear multi-layer piezoelectric energy harvester (MPEH). MPEHs here consist of carbon fibre laminates used as conducting layers, and glass fibre laminas as insulating components. We develop first a electromechanical model of the MPEH with parallel connection of PZT layers based on Euler-Bernoulli beam theory. The voltage and beam motion equations are obtained for harmonic excitations at arbitrary frequencies, and the coupling effect can be obtained from the response of the system. A direct comparison between MPEH and PEH configurations is performed both from the simulation (analytical and numerical) and experimental point of views. The experiments agree well with the model developed, and show that a MPEH configuration with the same flexural stiffness of a PEH can generate up to 1.98–2.5 times higher voltage output than a typical piezoelectric energy harvester with the same load resistance.

[1]  D. Inman,et al.  A piezomagnetoelastic structure for broadband vibration energy harvesting , 2009 .

[2]  Zhengbao Yang,et al.  Numerical and experimental study of a compressive-mode energy harvester under random excitations , 2017 .

[3]  Abdessattar Abdelkefi,et al.  Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters , 2016 .

[4]  Ahmad Paknejad,et al.  Analytical solution of piezoelectric energy harvester patch for various thin multilayer composite beams , 2016 .

[5]  Junyi Cao,et al.  Broadband tristable energy harvester: Modeling and experiment verification , 2014 .

[6]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[7]  Chee Kiong Soh,et al.  Improving functionality of vibration energy harvesters using magnets , 2012 .

[8]  Philip Bonello,et al.  Experimental validation of a distributed parameter piezoelectric bimorph cantilever energy harvester , 2010 .

[9]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[10]  Daniel J. Inman,et al.  Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs , 2009 .

[11]  Grzegorz Litak,et al.  Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass , 2012 .

[12]  L. E. Cross,et al.  Constitutive equations of symmetrical triple layer piezoelectric benders , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  Grzegorz Litak,et al.  Magnetopiezoelastic energy harvesting driven by random excitations , 2010 .

[14]  Mustafa Arafa,et al.  Modeling and experimental verification of multi-modal vibration energy harvesting from plate structures , 2013 .

[15]  J. L. Curiel-Sosa,et al.  Piezoelectric energy harvester composite under dynamic bending with implementation to aircraft wingbox structure , 2016 .

[16]  C. Bert,et al.  The behavior of structures composed of composite materials , 1986 .

[17]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[18]  Norman M. Wereley,et al.  Energy Harvesting Devices Using Macro-fiber Composite Materials , 2010 .

[19]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[20]  Sondipon Adhikari,et al.  The analysis of piezomagnetoelastic energy harvesters under broadband random excitations , 2011 .

[21]  Jan R. Wright,et al.  Design of a multiresonant beam for broadband piezoelectric energy harvesting , 2010 .

[22]  H. A. Kim,et al.  Static and dynamic analysis of bistable piezoelectric- composite plates for energy harvesting , 2012 .

[23]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[24]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[25]  Yanqi Li,et al.  The influence of lay-up design on the performance of bi-stable piezoelectric energy harvester , 2017 .

[26]  Daniel J. Inman,et al.  Piezoelectric energy harvesting from broadband random vibrations , 2009 .

[27]  A. F. Arrieta,et al.  Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites , 2013 .

[28]  Jens Twiefel,et al.  Survey on broadband techniques for vibration energy harvesting , 2013 .

[29]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[30]  Pan Diankun,et al.  Piezoelectric energy harvester based on bi-stable hybrid symmetric laminate , 2015 .

[31]  Marco Ferrari,et al.  A single-magnet nonlinear piezoelectric converter for enhanced energy harvesting from random vibrations ☆ , 2011 .