Numerical entropy and adaptivity for finite volume schemes
暂无分享,去创建一个
[1] Gabriella Puppo. Numerical Entropy Production on Shocks and Smooth Transitions , 2002, J. Sci. Comput..
[2] E. Tadmor,et al. New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .
[3] S. Osher,et al. Numerical approximations to nonlinear conservation laws with locally varying time and space grids , 1983 .
[4] Eitan Tadmor,et al. Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..
[5] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[6] R. Hartmann,et al. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .
[7] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[8] Rosa Donat,et al. Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..
[9] Siegfried Müller,et al. Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping , 2007, J. Sci. Comput..
[10] A. Harten,et al. The artificial compression method for computation of shocks and contact discontinuities: III. Self , 1978 .
[11] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[12] Gabriella Puppo,et al. Numerical Entropy Production for Central Schemes , 2003, SIAM J. Sci. Comput..
[13] A. Harten. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .
[14] C. D. Chambers. On the Construction of οὐ μή , 1897, The Classical Review.
[15] E. Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.
[16] Mario Ohlberger,et al. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..
[17] Alexander Kurganov,et al. A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems , 2002 .
[18] Chi-Wang Shu,et al. High Order ENO and WENO Schemes for Computational Fluid Dynamics , 1999 .
[19] Bernardo Cockburn. An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .
[20] Eitan Tadmor,et al. The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .
[21] Jean-Luc Guermond,et al. Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..
[22] R. LeVeque,et al. Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .
[23] Gabriella Puppo,et al. An Error Indicator for Semidiscrete schemes , 2006 .
[24] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[25] Jianxian Qiu,et al. On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .
[26] Clint Dawson,et al. High Resolution Schemes for Conservation Laws with Locally Varying Time Steps , 2000, SIAM J. Sci. Comput..
[27] Hua-zhong,et al. HIGH RESOLUTION SCHEMES FOR CONSERVATION LAWS AND CONVECTION-DIFFUSION EQUATIONS WITH VARYING TIME AND SPACE GRIDS 1) , 2006 .
[28] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[29] R. LeVeque. Numerical methods for conservation laws , 1990 .
[30] Alexander Kurganov,et al. Local error analysis for approximate solutions of hyperbolic conservation laws , 2005, Adv. Comput. Math..
[31] Mario Ohlberger,et al. A review of a posteriori error control and adaptivity for approximations of non‐linear conservation laws , 2009 .
[32] Andreas Dedner,et al. Error Control for a Class of Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Conservation Laws , 2007, SIAM J. Numer. Anal..
[33] Gabriella Puppo,et al. Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..
[34] Randall J. LeVeque,et al. CLAWPACK Version 4.3 User's Guide , 2002 .
[35] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[36] A. Harten,et al. The artificial compression method for computation of shocks and contact discontinuities. I - Single conservation laws , 1977 .