Numerical entropy and adaptivity for finite volume schemes

We propose an a-posteriori error/smoothness indicator for standard semi-discrete finite volume schemes for systems of conservation laws, based on the numerical production of entropy. This idea extends previous work by the first author limited to central finite volume schemes on staggered grids. We prove that the indicator converges to zero with the same rate of the error of the underlying numerical scheme on smooth flows under grid refinement. We construct and test an adaptive scheme for systems of equations in which the mesh is driven by the entropy indicator. The adaptive scheme uses a single nonuniform grid with a variable timestep. We show how to implement a second order scheme on such a space-time non uniform grid, preserving accuracy and conservation properties. We also give an example of a p-adaptive strategy

[1]  Gabriella Puppo Numerical Entropy Production on Shocks and Smooth Transitions , 2002, J. Sci. Comput..

[2]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[3]  S. Osher,et al.  Numerical approximations to nonlinear conservation laws with locally varying time and space grids , 1983 .

[4]  Eitan Tadmor,et al.  Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..

[5]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[6]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[7]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[8]  Rosa Donat,et al.  Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..

[9]  Siegfried Müller,et al.  Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping , 2007, J. Sci. Comput..

[10]  A. Harten,et al.  The artificial compression method for computation of shocks and contact discontinuities: III. Self , 1978 .

[11]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[12]  Gabriella Puppo,et al.  Numerical Entropy Production for Central Schemes , 2003, SIAM J. Sci. Comput..

[13]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[14]  C. D. Chambers On the Construction of οὐ μή , 1897, The Classical Review.

[15]  E. Tadmor Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[16]  Mario Ohlberger,et al.  A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..

[17]  Alexander Kurganov,et al.  A Smoothness Indicator for Adaptive Algorithms for Hyperbolic Systems , 2002 .

[18]  Chi-Wang Shu,et al.  High Order ENO and WENO Schemes for Computational Fluid Dynamics , 1999 .

[19]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[20]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[21]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[22]  R. LeVeque,et al.  Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .

[23]  Gabriella Puppo,et al.  An Error Indicator for Semidiscrete schemes , 2006 .

[24]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[25]  Jianxian Qiu,et al.  On the construction, comparison, and local characteristic decomposition for high-Order central WENO schemes , 2002 .

[26]  Clint Dawson,et al.  High Resolution Schemes for Conservation Laws with Locally Varying Time Steps , 2000, SIAM J. Sci. Comput..

[27]  Hua-zhong,et al.  HIGH RESOLUTION SCHEMES FOR CONSERVATION LAWS AND CONVECTION-DIFFUSION EQUATIONS WITH VARYING TIME AND SPACE GRIDS 1) , 2006 .

[28]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[29]  R. LeVeque Numerical methods for conservation laws , 1990 .

[30]  Alexander Kurganov,et al.  Local error analysis for approximate solutions of hyperbolic conservation laws , 2005, Adv. Comput. Math..

[31]  Mario Ohlberger,et al.  A review of a posteriori error control and adaptivity for approximations of non‐linear conservation laws , 2009 .

[32]  Andreas Dedner,et al.  Error Control for a Class of Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Conservation Laws , 2007, SIAM J. Numer. Anal..

[33]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[34]  Randall J. LeVeque,et al.  CLAWPACK Version 4.3 User's Guide , 2002 .

[35]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[36]  A. Harten,et al.  The artificial compression method for computation of shocks and contact discontinuities. I - Single conservation laws , 1977 .