Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics

&NA; With the dramatic consequences of bacterial resistance to antibiotics, nanomaterials and molecular transporters have started to be investigated as alternative antibacterials or anti‐infective carrier systems to improve the internalization of bactericidal drugs. However, the capability of nanomaterials/molecular transporters to overcome the bacterial cell envelope is poorly understood. It is critical to consider the sophisticated architecture of bacterial envelopes and reflect how nanomaterials/molecular transporters can interact with these envelopes, being the major aim of this review. The first part of this manuscript overviews the permeability of bacterial envelopes and how it limits the internalization of common antibiotic and novel oligonucleotide drugs. Subsequently we critically discuss the mechanisms that allow nanomaterials/molecular transporters to overcome the bacterial envelopes, focusing on the most promising ones to this end – siderophores, cyclodextrins, metal nanoparticles, antimicrobial/cell‐penetrating peptides and fusogenic liposomes. This review may stimulate drug delivery and microbiology scientists in designing effective nanomaterials/molecular transporters against bacterial infections.

[1]  P. Lambert,et al.  Cellular impermeability and uptake of biocides and antibiotics in Gram‐positive bacteria and mycobacteria , 2002, Symposium series.

[2]  M. Winterhalter,et al.  Outer-membrane translocation of bulky small molecules by passive diffusion , 2015, Proceedings of the National Academy of Sciences.

[3]  Dr. rer. nat. habil. Guntram Seltmann,et al.  The Bacterial Cell Wall , 2001, Springer Berlin Heidelberg.

[4]  Ülo Langel,et al.  Cell entry and antimicrobial properties of eukaryotic cell‐ penetrating peptides , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  J. Jault,et al.  Single Nanoparticle Plasmonic Spectroscopy for Study of the Efflux Function of Multidrug ABC Membrane Transporters of Single Live Cells. , 2016, RSC advances.

[6]  Ruchi Yadav,et al.  Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[7]  M. Cooper,et al.  Antibiotics in the clinical pipeline in 2013 , 2013, The Journal of Antibiotics.

[8]  A. L. Koch,et al.  The permeability of the wall fabric of Escherichia coli and Bacillus subtilis , 1996, Journal of bacteriology.

[9]  Josef D. Franke,et al.  Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus , 2010, Proceedings of the National Academy of Sciences.

[10]  Tao Chen,et al.  Novel Anion Liposome-Encapsulated Antisense Oligonucleotide Restores Susceptibility of Methicillin-Resistant Staphylococcus aureus and Rescues Mice from Lethal Sepsis by Targeting mecA , 2009, Antimicrobial Agents and Chemotherapy.

[11]  B. Berg Going Forward Laterally: Transmembrane Passage of Hydrophobic Molecules through Protein Channel Walls , 2010 .

[12]  C. Walsh,et al.  Glycopeptide and lipoglycopeptide antibiotics. , 2005, Chemical reviews.

[13]  C. Weidenmaier,et al.  Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions , 2008, Nature Reviews Microbiology.

[14]  Maurice Green,et al.  Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein , 1988, Cell.

[15]  H. Nikaido,et al.  Prevention of drug access to bacterial targets: permeability barriers and active efflux. , 1994, Science.

[16]  G. González‐Gaitano,et al.  The Aggregation of Cyclodextrins as Studied by Photon Correlation Spectroscopy , 2002 .

[17]  M. Seleem,et al.  Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens , 2016, Scientific Reports.

[18]  K. Diederichs,et al.  Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. , 1998, Science.

[19]  Y. Pore,et al.  Effect of beta-cyclodextrin and hydroxypropyl beta-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir. , 2008, Journal of pharmaceutical and biomedical analysis.

[20]  C. Ortiz,et al.  Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) , 2014, International journal of nanomedicine.

[21]  F. Yoshimura,et al.  Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes , 1982, Journal of bacteriology.

[22]  E. Reynolds,et al.  Maculatin 1.1 Disrupts Staphylococcus aureus Lipid Membranes via a Pore Mechanism , 2013, Antimicrobial Agents and Chemotherapy.

[23]  K. Sobczak,et al.  Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy , 2015, Nucleic acids research.

[24]  T. McIntosh,et al.  Influence of lipid composition on physical properties and peg-mediated fusion of curved and uncurved model membrane vesicles: "nature's own" fusogenic lipid bilayer. , 2001, Biochemistry.

[25]  L. Kotra,et al.  High-Resolution Atomic Force Microscopy Studies of the Escherichia coli Outer Membrane: Structural Basis for Permeability , 2000 .

[26]  C. Gross,et al.  From the regulation of peptidoglycan synthesis to bacterial growth and morphology , 2011, Nature Reviews Microbiology.

[27]  A. Kozubek,et al.  In vitro antimicrobial activity of liposomal meropenem against Pseudomonas aeruginosa strains. , 2006, International journal of pharmaceutics.

[28]  Kwangmeyung Kim,et al.  Study of antibacterial mechanism of graphene oxide using Raman spectroscopy , 2016, Scientific Reports.

[29]  Q. Mei,et al.  Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium , 2013, International journal of nanomedicine.

[30]  V. Braun FhuA (TonA), the Career of a Protein , 2009, Journal of bacteriology.

[31]  P. Fillion,et al.  Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides. , 2001, Biochimica et biophysica acta.

[32]  A. Nokhodchi,et al.  Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. , 2011, Colloids and surfaces. B, Biointerfaces.

[33]  Andrzej S. Skwarecki,et al.  Antimicrobial molecular nanocarrier-drug conjugates. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[34]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[35]  C. Wahlestedt,et al.  Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. , 2000, Microbiology.

[36]  M. Tolmasky,et al.  Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria , 2009, Proceedings of the National Academy of Sciences.

[37]  P. Horanyi,et al.  How hydrophobic molecules traverse the outer membranes of Gram-negative bacteria , 2011, Proceedings of the National Academy of Sciences.

[38]  Nuno Filipe Azevedo,et al.  Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes , 2015, PloS one.

[39]  M. Esmaeili,et al.  Antibacterial effect of silver nanoparticles on Staphylococcus aureus. , 2011, Research in microbiology.

[40]  M. Benedetti,et al.  Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. , 2006, Nano letters.

[41]  Jun Chen,et al.  Direct Measurement of Sizes and Dynamics of Single Living Membrane Transporters Using Nanooptics , 2002 .

[42]  H. Nikaido Transport across the bacterial outer membrane , 1993, Journal of bioenergetics and biomembranes.

[43]  Marilyn Roberts,et al.  Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance , 2001, Microbiology and Molecular Biology Reviews.

[44]  M. Schnabelrauch,et al.  New synthetic siderophores and their beta-lactam conjugates based on diamino acids and dipeptides. , 2002, Bioorganic & medicinal chemistry.

[45]  P. Lambert Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. , 2002, Journal of applied microbiology.

[46]  M. Seleem,et al.  Targeting Essential Genes in Salmonella enterica Serovar Typhimurium with Antisense Peptide Nucleic Acid , 2012, Antimicrobial Agents and Chemotherapy.

[47]  Gupta,et al.  The concentration-dependent membrane activity of cecropin A , 1999, Biochemistry.

[48]  Ž. Vanić,et al.  Current Trends in Development of Liposomes for Targeting Bacterial Biofilms , 2016, Pharmaceutics.

[49]  M. Yacamán,et al.  The bactericidal effect of silver nanoparticles , 2005, Nanotechnology.

[50]  G. Gregoriadis The Carrier Potential of Liposomes in Biology and Medicine , 1976 .

[51]  M. Tolmasky,et al.  Internalization of Locked Nucleic Acids/DNA Hybrid Oligomers into Escherichia coli , 2012, BioResearch open access.

[52]  F. Ding,et al.  Probing of multidrug ABC membrane transporters of single living cells using single plasmonic nanoparticle optical probes , 2010, Analytical and bioanalytical chemistry.

[53]  H. Vogel,et al.  Structural biology of bacterial iron uptake. , 2008, Biochimica et biophysica acta.

[54]  Kirk G Scheckel,et al.  Surface charge-dependent toxicity of silver nanoparticles. , 2011, Environmental science & technology.

[55]  S. White,et al.  Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. , 1997, Biophysical journal.

[56]  Menachem Elimelech,et al.  Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. , 2015, ACS nano.

[57]  J. Pagés,et al.  Erratum: Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A , 2017, Nature Microbiology.

[58]  J. Wengel,et al.  Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. , 2011, Chemical Society reviews.

[59]  Daniel N. Wilson Ribosome-targeting antibiotics and mechanisms of bacterial resistance , 2013, Nature Reviews Microbiology.

[60]  R. Epand,et al.  Relationship of membrane curvature to the formation of pores by magainin 2. , 1998, Biochemistry.

[61]  F. Milletti,et al.  Cell-penetrating peptides: classes, origin, and current landscape. , 2012, Drug discovery today.

[62]  J. Dubochet,et al.  Cryo-Transmission Electron Microscopy of Frozen-Hydrated Sections of Escherichia coli and Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[63]  J. Maillard,et al.  Cellular impermeability and uptake of biocides and antibiotics in Gram‐negative bacteria , 2002, Journal of applied microbiology.

[64]  Haiping Fang,et al.  Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. , 2013, Nature nanotechnology.

[65]  G. Wieland,et al.  Wheat Germ Agglutinin Modified Liposomes for the Photodynamic Inactivation of Bacteria † , 2012, Photochemistry and photobiology.

[66]  R. Pignatello,et al.  Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria. , 2010, International journal of antimicrobial agents.

[67]  J. Wengel,et al.  Locked vs. Unlocked Nucleic Acids (LNA vs. UNA): Contrasting Structures Work Towards Common Therapeutic Goals , 2012 .

[68]  J. Lagacé,et al.  IN VITRO BACTERICIDAL EVALUATION OF A LOW PHASE TRANSITION TEMPERATURE LIPOSOMAL TOBRAMYCIN FORMULATION AS A DRY POWDER PREPARATION AGAINST GRAM NEGATIVE AND GRAM POSITIVE BACTERIA , 1999 .

[69]  P. Iversen,et al.  Cationic phosphorodiamidate morpholino oligomers efficiently prevent growth of Escherichia coli in vitro and in vivo. , 2010, The Journal of antimicrobial chemotherapy.

[70]  Sergey M. Bezrukov,et al.  Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Elizabeth A. Cameron,et al.  Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts , 2014, mBio.

[72]  H. Goossens,et al.  Antibiotic resistance—the need for global solutions , 2013, BDJ.

[73]  K. Braeckmans,et al.  Intracellular delivery of oligonucleotides in Helicobacter pylori by fusogenic liposomes in the presence of gastric mucus. , 2017, Biomaterials.

[74]  G. Dickson,et al.  Translational Inhibition of CTX-M Extended Spectrum β-Lactamase in Clinical Strains of Escherichia coli by Synthetic Antisense Oligonucleotides Partially Restores Sensitivity to Cefotaxime , 2016, Front. Microbiol..

[75]  Abdelwahab Omri,et al.  Mechanism of Enhanced Activity of Liposome-Entrapped Aminoglycosides against Resistant Strains of Pseudomonas aeruginosa , 2006, Antimicrobial Agents and Chemotherapy.

[76]  T. Chen,et al.  Differential Behaviour of Fluid Liposomes Toward Mammalian Epithelial Cells and Bacteria: Restriction of Fusion to Bacteria , 2002, Journal of drug targeting.

[77]  Abdelwahab Omri,et al.  Preparation, properties and the effects of amikacin, netilmicin and tobramycin in free and liposomal formulations on Gram-negative and Gram-positive bacteria. , 1996, International journal of antimicrobial agents.

[78]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[79]  S. Walker,et al.  Wall teichoic acids of gram-positive bacteria. , 2013, Annual review of microbiology.

[80]  Liju Yang,et al.  Inactivation of bacterial pathogens by carbon nanotubes in suspensions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[81]  N. Düzgüneş,et al.  Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages. , 2003, International journal of pharmaceutics.

[82]  Nicola K. Petty,et al.  Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms , 2016, Nature Communications.

[83]  M. Fresta,et al.  Ofloxacin-Loaded Liposomes: In Vitro Activity and Drug Accumulation in Bacteria , 2000, Antimicrobial Agents and Chemotherapy.

[84]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[85]  T. Xu,et al.  Evaluation of polyamidoamine (PAMAM) dendrimers as drug carriers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. , 2007, European journal of medicinal chemistry.

[86]  E. Rubinstein,et al.  Antibacterial synergism of polymyxin B nonapeptide and hydrophobic antibiotics in experimental gram-negative infections in mice , 1994, Antimicrobial Agents and Chemotherapy.

[87]  Aseem Kumar,et al.  Bactericidal efficacy of liposomal aminoglycosides against Burkholderia cenocepacia. , 2007, The Journal of antimicrobial chemotherapy.

[88]  J. M. Lanao,et al.  Current applications of nanoparticles in infectious diseases. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[89]  P. Iversen,et al.  Variations in Amino Acid Composition of Antisense Peptide-Phosphorodiamidate Morpholino Oligomer Affect Potency against Escherichia coli In Vitro and In Vivo , 2008, Antimicrobial Agents and Chemotherapy.

[90]  X. Xue,et al.  Antisense antibiotics: a brief review of novel target discovery and delivery. , 2010, Current Drug Discovery Technologies.

[91]  T. Camesano,et al.  Atomic force microscopy study of the role of LPS O‐antigen on adhesion of E. coli , 2009, Journal of molecular recognition : JMR.

[92]  P. Madureira,et al.  Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration. , 2016, Journal of biotechnology.

[93]  A. Friedman,et al.  Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: a targeted therapy for cutaneous pathogens , 2012, The Journal of investigative dermatology.

[94]  Andrea M. Kasko,et al.  Engineering Persister-Specific Antibiotics with Synergistic Antimicrobial Functions , 2014, ACS nano.

[95]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..

[96]  Peter E. Nielsen,et al.  Bactericidal antisense effects of peptide–PNA conjugates , 2001, Nature Biotechnology.

[97]  H. Nikaido,et al.  Outer membranes of Gram‐negative bacteria are permeable to steroid probes , 1992, Molecular microbiology.

[98]  M. Page,et al.  In vitro activity of BAL30072 against Burkholderia pseudomallei. , 2011, International journal of antimicrobial agents.

[99]  D. Rodrigues,et al.  Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. , 2012, Nanoscale.

[100]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[101]  P. Fernandes,et al.  Antibiotics in late clinical development , 2017, Biochemical pharmacology.

[102]  Chun-Ming Huang,et al.  Development of nanoparticles for antimicrobial drug delivery. , 2010, Current medicinal chemistry.

[103]  P. Iversen,et al.  Antisense phosphorodiamidate morpholino oligomer inhibits viability of Escherichia coli in pure culture and in mouse peritonitis. , 2005, The Journal of antimicrobial chemotherapy.

[104]  N. Fujii,et al.  Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. , 1995, Biochemistry.

[105]  R. Schiffelers,et al.  Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. , 2001, The Journal of antimicrobial chemotherapy.

[106]  M. Record,et al.  Protein diffusion in the periplasm of E. coli under osmotic stress. , 2011, Biophysical journal.

[107]  T. Lu,et al.  Fusion between fluid liposomes and intact bacteria: study of driving parameters and in vitro bactericidal efficacy , 2016, International journal of nanomedicine.

[108]  J. Klein-Seetharaman,et al.  The enzymatic oxidation of graphene oxide. , 2011, ACS nano.

[109]  M. Sansom,et al.  Simulations of anion transport through OprP reveal the molecular basis for high affinity and selectivity for phosphate , 2009, Proceedings of the National Academy of Sciences.

[110]  A. Coates,et al.  Novel classes of antibiotics or more of the same? , 2011, British journal of pharmacology.

[111]  Shengrong Guo,et al.  Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[112]  K. Braeckmans,et al.  Effect of Native Gastric Mucus on in vivo Hybridization Therapies Directed at Helicobacter pylori , 2015, Molecular therapy. Nucleic acids.

[113]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[114]  Carl O. Pabo,et al.  Cellular uptake of the tat protein from human immunodeficiency virus , 1988, Cell.

[115]  T. Silhavy,et al.  Outer membrane lipoprotein biogenesis: Lol is not the end , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[116]  G. Wong,et al.  Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. , 2013, Current opinion in solid state & materials science.

[117]  Frances Separovic,et al.  The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. , 2012, Physical chemistry chemical physics : PCCP.

[118]  Gerard D. Wright Q&A: Antibiotic resistance: where does it come from and what can we do about it? , 2010, BMC Biology.

[119]  T. Xu,et al.  Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. , 2007, European journal of medicinal chemistry.

[120]  Mark E. Davis,et al.  Cyclodextrin-based pharmaceutics: past, present and future , 2004, Nature Reviews Drug Discovery.

[121]  Miguel A R B Castanho,et al.  Cell-penetrating peptides and antimicrobial peptides: how different are they? , 2006, The Biochemical journal.

[122]  Zi-rong Xu,et al.  Preparation and antibacterial activity of chitosan nanoparticles. , 2004, Carbohydrate research.

[123]  B. Kreikemeyer,et al.  Inhibition of Growth and Gene Expression by PNA-peptide Conjugates in Streptococcus pyogenes , 2013, Molecular therapy. Nucleic acids.

[124]  P. Khaw,et al.  Neuroprotection and other novel therapies for glaucoma. , 2013, Current opinion in pharmacology.

[125]  M. Winterhalter,et al.  General Method to Determine the Flux of Charged Molecules through Nanopores Applied to β-Lactamase Inhibitors and OmpF. , 2017, The journal of physical chemistry letters.

[126]  T. Coenye,et al.  Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[127]  K. Poole Efflux-mediated antimicrobial resistance. , 2005, The Journal of antimicrobial chemotherapy.

[128]  A. Ohashi,et al.  Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA , 2009, Applied Microbiology and Biotechnology.

[129]  R. Hancock,et al.  Sublethal Concentrations of Pleurocidin-Derived Antimicrobial Peptides Inhibit Macromolecular Synthesis in Escherichia coli , 2002, Antimicrobial Agents and Chemotherapy.

[130]  A. Sosnik,et al.  Cyclodextrin complexes for treatment improvement in infectious diseases. , 2015, Nanomedicine.

[131]  M. Vieira,et al.  DNA Mimics for the Rapid Identification of Microorganisms by Fluorescence in situ Hybridization (FISH) , 2008, International journal of molecular sciences.

[132]  Hiroshi Nikaido,et al.  Efflux-Mediated Drug Resistance in Bacteria , 2012, Drugs.

[133]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[134]  Alok Dhawan,et al.  Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. , 2011, Chemosphere.

[135]  B. van den Berg,et al.  Crystal structure of the bacterial nucleoside transporter Tsx , 2004, The EMBO journal.

[136]  N. Woodford,et al.  Tackling antibiotic resistance: a dose of common antisense? , 2008, The Journal of antimicrobial chemotherapy.

[137]  M. P. Gallagher,et al.  Purification and properties of the Escherichia coli nucleoside transporter NupG, a paradigm for a major facilitator transporter sub-family , 2004, Molecular membrane biology.

[138]  J. Cortes,et al.  Liposomal delivery of nucleic acid-based anticancer therapeutics: BP-100-1.01 , 2015, Expert opinion on drug delivery.

[139]  X. Xue,et al.  Targeting RNA Polymerase Primary σ70 as a Therapeutic Strategy against Methicillin-Resistant Staphylococcus aureus by Antisense Peptide Nucleic Acid , 2012, PloS one.

[140]  R. Hancock,et al.  Cationic peptides: a new source of antibiotics. , 1998, Trends in biotechnology.

[141]  V. Braun,et al.  Outer membrane channels and active transporters for the uptake of antibiotics. , 2001, The Journal of infectious diseases.

[142]  V. Karginov Cyclodextrin derivatives as anti-infectives. , 2013, Current opinion in pharmacology.

[143]  P. Nielsen,et al.  Cell Permeabilization and Uptake of Antisense Peptide-Peptide Nucleic Acid (PNA) into Escherichia coli * , 2002, The Journal of Biological Chemistry.

[144]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[145]  S. Chakraborty,et al.  Biocompatibility of folate-modified chitosan nanoparticles. , 2012, Asian Pacific journal of tropical biomedicine.

[146]  Waldemar Vollmer,et al.  Architecture of peptidoglycan: more data and more models. , 2010, Trends in microbiology.

[147]  T. Niemiec,et al.  Visualization of gold and platinum nanoparticles interacting with Salmonella Enteritidis and Listeria monocytogenes , 2010, International journal of nanomedicine.

[148]  E. Stokes,et al.  Estimates of the porosity of Bacillus licheniformis and Bacillus subtilis cell walls. , 1975, Zeitschrift fur Immunitatsforschung, experimentelle und klinische Immunologie.

[149]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[150]  G Gregoriadis,et al.  The carrier potential of liposomes in biology and medicine (second of two parts). , 1976, The New England journal of medicine.

[151]  T. Silhavy,et al.  The bacterial cell envelope. , 2010, Cold Spring Harbor perspectives in biology.

[152]  S Gnanakaran,et al.  Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. , 2015, ACS infectious diseases.

[153]  J. Kjems,et al.  Biological activity and biotechnological aspects of locked nucleic acids. , 2013, Advances in genetics.

[154]  T. Chen,et al.  Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. , 2000, Biochimica et biophysica acta.

[155]  K. Neoh,et al.  Sugar-Grafted Cyclodextrin Nanocarrier as a “Trojan Horse” for Potentiating Antibiotic Activity , 2016, Pharmaceutical Research.

[156]  Özkan Yildiz,et al.  Structure of the monomeric outer‐membrane porin OmpG in the open and closed conformation , 2006, The EMBO journal.

[157]  M. Page,et al.  In vitro activity of the siderophore monosulfactam BAL30072 against meropenem-non-susceptible Acinetobacter baumannii. , 2012, The Journal of antimicrobial chemotherapy.

[158]  M. Winterhalter,et al.  Bacterial Outer Membrane Porins as Electrostatic Nanosieves: Exploring Transport Rules of Small Polar Molecules. , 2017, ACS nano.

[159]  Liangfang Zhang,et al.  Nanoparticle approaches against bacterial infections. , 2014, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[160]  M. Dathe,et al.  Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. , 1999, Biochimica et biophysica acta.

[161]  Carla C. C. R. de Carvalho,et al.  Siderophores as “Trojan Horses”: tackling multidrug resistance? , 2014, Front. Microbiol..

[162]  B. Gilmore,et al.  Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections. , 2016, Future microbiology.

[163]  M. N. Melo,et al.  Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations , 2009, Nature Reviews Microbiology.

[164]  V. Braun,et al.  Sideromycins: tools and antibiotics , 2009, BioMetals.

[165]  William C Wimley,et al.  Describing the mechanism of antimicrobial peptide action with the interfacial activity model. , 2010, ACS chemical biology.

[166]  Xinghai Shen,et al.  Cyclodextrin-based aggregates and characterization by microscopy. , 2008, Micron.

[167]  Robert Langer,et al.  Nanomedicine in the Management of Microbial Infection - Overview and Perspectives. , 2014, Nano today.

[168]  D. Pink,et al.  Thickness and Elasticity of Gram-Negative Murein Sacculi Measured by Atomic Force Microscopy , 1999, Journal of bacteriology.

[169]  P. Madureira,et al.  Optimization of a peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method for the detection of bacteria and disclosure of a formamide effect. , 2014, Journal of biotechnology.

[170]  P. Brennan,et al.  Overview of the glycosylated components of the bacterial cell envelope , 2009 .

[171]  A. Trchounian,et al.  Effects of various heavy metal nanoparticles on Enterococcus hirae and Escherichia coli growth and proton-coupled membrane transport , 2015, Journal of Nanobiotechnology.

[172]  S. Cooper,et al.  Recent Advances in Antimicrobial Dendrimers , 2000 .

[173]  B. van den Berg,et al.  Ligand-gated diffusion across the bacterial outer membrane , 2011, Proceedings of the National Academy of Sciences.

[174]  T. Beveridge,et al.  Ultrastructural examination of the lipopolysaccharides of Pseudomonas aeruginosa strains and their isogenic rough mutants by freeze-substitution , 1992, Journal of bacteriology.

[175]  S. Simões,et al.  On the mechanisms of internalization and intracellular delivery mediated by pH-sensitive liposomes. , 2001, Biochimica et biophysica acta.

[176]  Menachem Elimelech,et al.  Antibacterial effects of carbon nanotubes: size does matter! , 2008, Langmuir : the ACS journal of surfaces and colloids.

[177]  S. Cooper,et al.  Interactions between dendrimer biocides and bacterial membranes. , 2002, Biomaterials.

[178]  J. Lagacé,et al.  In-vitro bactericidal efficacy of sub-MIC concentrations of liposome-encapsulated antibiotic against gram-negative and gram-positive bacteria. , 1998, The Journal of antimicrobial chemotherapy.

[179]  N. Malanovic,et al.  Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. , 2016, Biochimica et biophysica acta.

[180]  Prakash D Nallathamby,et al.  In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. , 2007, ACS nano.

[181]  이현주 Q. , 2005 .

[182]  J. Collins,et al.  How antibiotics kill bacteria: from targets to networks , 2010, Nature Reviews Microbiology.

[183]  A. Delcour,et al.  Outer membrane permeability and antibiotic resistance. , 2009, Biochimica et biophysica acta.

[184]  Dean G. Brown,et al.  ESKAPEing the labyrinth of antibacterial discovery , 2015, Nature Reviews Drug Discovery.

[185]  P. McHale,et al.  Enhancement of the antibacterial properties of silver nanoparticles using beta-cyclodextrin as a capping agent. , 2010, International journal of antimicrobial agents.

[186]  Quansheng Chen,et al.  Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles , 2015, Scientific Reports.

[187]  Siddhartha P Duttagupta,et al.  Strain specificity in antimicrobial activity of silver and copper nanoparticles. , 2008, Acta biomaterialia.

[188]  Joe J. Harrison,et al.  Antimicrobial activity of metals: mechanisms, molecular targets and applications , 2013, Nature Reviews Microbiology.

[189]  Morteza Mahmoudi,et al.  Antibacterial properties of nanoparticles. , 2012, Trends in biotechnology.

[190]  Adam J Friedman,et al.  Nanotechnology as a therapeutic tool to combat microbial resistance. , 2013, Advanced drug delivery reviews.

[191]  L. Piddock Multidrug-resistance efflux pumps ? not just for resistance , 2006, Nature Reviews Microbiology.

[192]  B. Brooks,et al.  Therapeutic strategies to combat antibiotic resistance. , 2014, Advanced drug delivery reviews.

[193]  W. Vollmer,et al.  Peptidoglycan Crosslinking Relaxation Promotes Helicobacter pylori's Helical Shape and Stomach Colonization , 2010, Cell.

[194]  R. Hancock,et al.  Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria , 2000, Antimicrobial Agents and Chemotherapy.

[195]  B. van den Berg Going Forward Laterally: Transmembrane Passage of Hydrophobic Molecules through Protein Channel Walls , 2010, Chembiochem : a European journal of chemical biology.

[196]  F. Separovic,et al.  How Membrane-Active Peptides Get into Lipid Membranes. , 2016, Accounts of chemical research.

[197]  Abdelwahab Omri,et al.  The Effect of Different Lipid Components on the In Vitro Stability and Release Kinetics of Liposome Formulations , 2004, Drug delivery.

[198]  A. Berg,et al.  Highly antibacterial active aminoacyl penicillin conjugates with acylated bis-catecholate siderophores based on secondary diamino acids and related compounds. , 2002, Journal of medicinal chemistry.

[199]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[200]  C. Raetz Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. , 1978, Microbiological reviews.

[201]  Xiao-Hong Nancy Xu,et al.  Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. , 2004, Biochemistry.

[202]  S. Ludtke,et al.  Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. , 1995, Biochemistry.

[203]  R. Sinisterra,et al.  Structural and thermodynamic characterization of doxycycline/β-cyclodextrin supramolecular complex and its bacterial membrane interactions. , 2014, Colloids and surfaces. B, Biointerfaces.

[204]  R. Epand,et al.  Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). , 2007, Biochimica et biophysica acta.

[205]  S. Bezrukov,et al.  Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. , 2006, Biophysical journal.

[206]  P. Wakeley,et al.  Synthesis , 2013, The Role of Animals in Emerging Viral Diseases.

[207]  W. Moerner,et al.  Single-molecule and superresolution imaging in live bacteria cells. , 2010, Cold Spring Harbor perspectives in biology.

[208]  M. Vaara,et al.  Group of peptides that act synergistically with hydrophobic antibiotics against gram-negative enteric bacteria , 1996, Antimicrobial agents and chemotherapy.

[209]  Dae Hong Jeong,et al.  Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[210]  M. Wood,et al.  Peptide-mediated Cell and In Vivo Delivery of Antisense Oligonucleotides and siRNA , 2012, Molecular Therapy - Nucleic Acids.

[211]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[212]  Dmitry A Rodionov,et al.  New Substrates for Tonb-dependent Transport: Do We Only See the 'tip of the Iceberg'? , 2022 .

[213]  Qingshan Shi,et al.  Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli , 2009, Applied Microbiology and Biotechnology.

[214]  D. Andersson,et al.  Mechanisms and consequences of bacterial resistance to antimicrobial peptides. , 2016, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[215]  Mie Kristensen,et al.  Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos , 2016, International journal of molecular sciences.

[216]  H. Nikaido Multidrug efflux pumps of gram-negative bacteria , 1996, Journal of bacteriology.

[217]  D. D. Ourth,et al.  Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. , 1996, European journal of biochemistry.

[218]  H. Gérard,et al.  PAMAM dendrimer-azithromycin conjugate nanodevices for the treatment of Chlamydia trachomatis infections. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[219]  L. Silver Challenges of Antibacterial Discovery , 2011, Clinical Microbiology Reviews.

[220]  K. Klabunde,et al.  Metal Oxide Nanoparticles as Bactericidal Agents , 2002 .

[221]  F. Atyabi,et al.  Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method , 2012, International journal of nanomedicine.

[222]  K. Edwards,et al.  PEG-stabilized lipid disks as carriers for amphiphilic antimicrobial peptides. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[223]  M. Winterhalter,et al.  The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria , 2008, Nature Reviews Microbiology.

[224]  I. Sondi,et al.  Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. , 2004, Journal of colloid and interface science.

[225]  Bernd Giese,et al.  Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. , 2013, Chemical reviews.

[226]  E. Antoniadou-Vyza,et al.  Antimicrobial activity of β‐lactam antibiotics against clinical pathogens after molecular inclusion in several cyclodextrins. A novel approach to bacterial resistance , 2003, The Journal of pharmacy and pharmacology.

[227]  Young Jik Kwon,et al.  "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[228]  R. Sinisterra,et al.  Ultrastructural changes in bacterial membranes induced by nano-assemblies β-cyclodextrin chlorhexidine: SEM, AFM, and TEM evaluation , 2013, Pharmaceutical development and technology.

[229]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[230]  Bert van den Berg,et al.  Transmembrane passage of hydrophobic compounds through a protein channel wall , 2009, Nature.

[231]  S. Guan,et al.  Treatment of Streptococcus mutans with antisense oligodeoxyribonucleotides to gtfB mRNA inhibits GtfB expression and function. , 2006, FEMS microbiology letters.

[232]  M. Winterhalter,et al.  Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example. , 2016, Biophysical journal.

[233]  M. Page,et al.  In Vitro Properties of BAL30072, a Novel Siderophore Sulfactam with Activity against Multiresistant Gram-Negative Bacilli , 2010, Antimicrobial Agents and Chemotherapy.

[234]  D. Livermore,et al.  Activity of the siderophore monobactam BAL30072 against multiresistant non-fermenters. , 2010, The Journal of antimicrobial chemotherapy.

[235]  K. Lohner New strategies for novel antibiotics: peptides targeting bacterial cell membranes. , 2009, General physiology and biophysics.

[236]  Gaurav Sahay,et al.  Endocytosis of nanomedicines. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[237]  Vladimir P Torchilin,et al.  Cell-penetrating peptides: breaking through to the other side. , 2012, Trends in molecular medicine.

[238]  L. Yang,et al.  Barrel-stave model or toroidal model? A case study on melittin pores. , 2001, Biophysical journal.

[239]  Chi-Ming Che,et al.  Proteomic analysis of the mode of antibacterial action of silver nanoparticles. , 2006, Journal of proteome research.

[240]  G. Qiao,et al.  Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers , 2016, Nature Microbiology.

[241]  W. Doroszkiewicz,et al.  The interaction between Pseudomonas aeruginosa cells and cationic PC:Chol:DOTAP liposomal vesicles versus outer-membrane structure and envelope properties of bacterial cell. , 2009, International journal of pharmaceutics.

[242]  H. M. Nielsen,et al.  Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure. , 2013, Biochimica et biophysica acta.

[243]  Yu-Hsin Lin,et al.  Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. , 2013, Biomaterials.

[244]  Heyou Han,et al.  Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. , 2014, Nanoscale.