A Monte Carlo method for solving unsteady adjoint equations
暂无分享,去创建一个
Qiqi Wang | David F. Gleich | Amin Saberi | Nasrollah Etemadi | Parviz Moin | A. Saberi | D. Gleich | P. Moin | N. Etemadi | Qiqi Wang | Nasrollah Etemadi
[1] Vikram Aggarwal,et al. Improved Monte Carlo Linear Solvers Through Non-diagonal Splitting , 2003, ICCSA.
[2] J. Westlake. Handbook of Numerical Matrix Inversion and Solution of Linear Equations , 1968 .
[3] Ivan Dimov,et al. Random walk on distant mesh points Monte Carlo methods , 1993 .
[4] Roger Temam,et al. DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms , 2001, Journal of Fluid Mechanics.
[5] T. Barth,et al. Error estimation and adaptive discretization methods in computational fluid dynamics , 2003 .
[6] Johan Hoffman,et al. WEAK UNIQUENESS OF THE NAVIER-STOKES EQUATIONS AND ADAPTIVE TURBULENCE SIMULATION , 2005 .
[7] Vassil N. Alexandrov,et al. Relaxed Monte Carlo Linear Solver , 2001, International Conference on Computational Science.
[8] Chih Jeng Kenneth Tan. Solving Systems of Linear Equations with Relaxed Monte Carlo Method , 2004, The Journal of Supercomputing.
[9] Andreas Griewank,et al. Advantages of Binomial Checkpointing for Memory-reduced Adjoint Calculations , 2004 .
[10] Arthur E. Bryson,et al. Energy-state approximation in performance optimization of supersonic aircraft , 1969 .
[11] Pat Hanrahan,et al. Monte Carlo evaluation of non-linear scattering equations for subsurface reflection , 2000, SIGGRAPH.
[12] Andreas Griewank,et al. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation , 1992 .
[13] E. S. Levinsky,et al. Lifting-surface theory for V/STOL aircraft in transition and cruise. II , 1969 .
[14] Andreas Griewank,et al. A mathematical view of automatic differentiation , 2003, Acta Numerica.
[15] Vassil Alexandrov. Efficient parallel Monte Carlo methods for matrix computations , 1998 .
[16] Giray Ökten,et al. Solving Linear Equations by Monte Carlo Simulation , 2005, SIAM J. Sci. Comput..
[17] L. J. Comrie,et al. Mathematical Tables and Other Aids to Computation. , 1946 .
[18] M. Giles,et al. Adjoint Error Correction for Integral Outputs , 2003 .
[19] Niles A. Pierce,et al. An Introduction to the Adjoint Approach to Design , 2000 .
[20] J. Hoffman. ON DUALITY BASED A POSTERIORI ERROR ESTIMATION IN VARIOUS NORMS AND LINEAR FUNCTIONALS FOR LES , 2004 .
[21] R. A. Leibler,et al. Matrix inversion by a Monte Carlo method , 1950 .
[22] Johan Hoffman,et al. On Duality-Based A Posteriori Error Estimation in Various Norms and Linear Functionals for Large Eddy Simulation , 2004, SIAM J. Sci. Comput..
[23] R. Temam,et al. Feedback control for unsteady flow and its application to the stochastic Burgers equation , 1993, Journal of Fluid Mechanics.
[24] Max Gunzburger,et al. The Velocity Tracking Problem for Navier--Stokes Flows with Bounded Distributed Controls , 1999 .
[25] M. Giles,et al. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.
[26] Isabelle Charpentier,et al. Checkpointing Schemes for Adjoint Codes: Application to the Meteorological Model Meso-NH , 2000, SIAM J. Sci. Comput..
[27] Max Gunzburger,et al. Analysis and approximation for linear feedback control for tracking the velocity in Navier–Stokes flows , 2000 .
[28] N. Metropolis,et al. The Monte Carlo method. , 1949 .
[29] J. Hammersley. SIMULATION AND THE MONTE CARLO METHOD , 1982 .
[30] Antony Jameson,et al. Aerodynamic design via control theory , 1988, J. Sci. Comput..