On the Bethe states of the one-dimensional supersymmetric t − J model with generic open boundaries

[1]  J. van den Brink,et al.  Strongly Enhanced Superconductivity in Coupled t-J Segments. , 2015, Physical review letters.

[2]  Wen-Li Yang,et al.  Off-Diagonal Bethe Ansatz for Exactly Solvable Models , 2015 .

[3]  Wen-Li Yang,et al.  Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz , 2014, 1407.5294.

[4]  Wen-Li Yang,et al.  Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms , 2014, 1403.7915.

[5]  Wen-Li Yang,et al.  Exact solution of the one-dimensional super-symmetric t–J model with unparallel boundary fields , 2013, 1312.0376.

[6]  Wen-Li Yang,et al.  Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields , 2013, 1311.0432.

[7]  Wen-Li Yang,et al.  Spin-1/2 XYZ model revisit: General solutions via off-diagonal Bethe ansatz , 2013, 1307.0280.

[8]  Wen-Li Yang,et al.  Nested off-diagonal Bethe ansatz and exact solutions of the su(n) spin chain with generic integrable boundaries , 2013, 1312.4770.

[9]  S. Belliard,et al.  Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz , 2013, 1309.6165.

[10]  Rafael I. Nepomechie An inhomogeneous T-Q equation for the open XXX chain with general boundary terms: completeness and arbitrary spin , 2013, 1307.5049.

[11]  Wen-Li Yang,et al.  Off-diagonal Bethe ansatz solutions of the anisotropic spin-12 chains with arbitrary boundary fields , 2013, 1307.2023.

[12]  Wen-Li Yang,et al.  Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions , 2013, 1306.1742.

[13]  Wen-Li Yang,et al.  Off-diagonal Bethe ansatz and exact solution of a topological spin ring. , 2013, Physical review letters.

[14]  H. Frahm,et al.  Truncation identities for the small polaron fusion hierarchy , 2012, 1211.6328.

[15]  T. Wirth,et al.  Separation of variables in the open XXX chain , 2008, 0803.1776.

[16]  W. Galléas Spectrum of the supersymmetric t–J model with non-diagonal open boundaries , 2007, nlin/0703003.

[17]  M. Wadati,et al.  Integrable boundary impurities in the /t-/J model with different gradings , 2000, cond-mat/0008429.

[18]  M. Wadati,et al.  Exact diagonalization of the generalized supersymmetric t-J model with boundaries , 1999, cond-mat/9906083.

[19]  F. Pu,et al.  Two magnetic impurities with arbitrary spins in open boundary t-J model , 1999, cond-mat/9907058.

[20]  H. Frahm,et al.  OPEN T-J CHAIN WITH BOUNDARY IMPURITIES , 1999, cond-mat/9903202.

[21]  H. Fan,et al.  Algebraic Bethe ansatz for the supersymmetric t- J model with reflecting boundary conditions , 1998, cond-mat/9803215.

[22]  F. Pu,et al.  Integrabilities of the t- J model with impurities , 1998, cond-mat/9804032.

[23]  M. Gould,et al.  Eight-state supersymmetric U model of strongly correlated fermions , 1997, cond-mat/9709129.

[24]  A. Bracken,et al.  Integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons , 1997, cond-mat/9710141.

[25]  J. Dai,et al.  EXACT RESULTS FOR A KONDO PROBLEM IN A ONE-DIMENSIONAL T-J MODEL , 1997, cond-mat/9706086.

[26]  M. Batchelor,et al.  Spin excitations in the integrable open quantum group invariant supersymmetric t- J model , 1996, cond-mat/9611013.

[27]  F. Essler The supersymmetric t - J model with a boundary , 1996, cond-mat/9605180.

[28]  A. Gonz'alez--Ruiz Integrable open-boundary conditions for the supersymmetric t-J model the quantum-group-invariant case , 1994, hep-th/9401118.

[29]  A. Foerster,et al.  The supersymmetric t- J model with quantum group invariance , 1993 .

[30]  Korepin,et al.  Higher conservation laws and algebraic Bethe Ansa-umltze for the supersymmetric t-J model. , 1992, Physical review. B, Condensed matter.

[31]  S. Sarkar The supersymmetric t - J model in one dimension , 1991 .

[32]  Hybertsen,et al.  Renormalization from density-functional theory to strong-coupling models for electronic states in Cu-O materials. , 1990, Physical review. B, Condensed matter.

[33]  Christensen,et al.  Calculation of Coulomb-interaction parameters for La2CuO4 using a constrained-density-functional approach. , 1989, Physical review. B, Condensed matter.

[34]  Sawatzky,et al.  Tendency towards local spin compensation of holes in the high-Tc copper compounds. , 1988, Physical review letters.

[35]  Zhang,et al.  Effective Hamiltonian for the superconducting Cu oxides. , 1988, Physical review. B, Condensed matter.

[36]  B. Sutherland Model for a multicomponent quantum system , 1975 .

[37]  C. Lai Lattice gas with nearest‐neighbor interaction in one dimension with arbitrary statistics , 1974 .