Nonlinear iterative approximation of steady incompressible chemically reacting flows
暂无分享,去创建一个
[1] Endre Süli,et al. Adaptive iterative linearised finite element methods for implicitly constituted incompressible fluid flow problems and its application to Bingham fluids , 2021, Applied Numerical Mathematics.
[2] E. Süli,et al. On the convergence rate of the Kačanov scheme for shear-thinning fluids , 2021, Calcolo.
[3] Endre Süli,et al. Uniform Hölder-norm bounds for finite element approximations of second-order elliptic equations , 2020, IMA Journal of Numerical Analysis.
[4] M. Bulíček,et al. On the Existence of Classical Solution to the Steady Flows of Generalized Newtonian Fluid with Concentration Dependent Power-Law Index , 2018, Journal of Mathematical Fluid Mechanics.
[5] Endre Süli,et al. Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index , 2017, Math. Comput..
[6] Seungchan Ko,et al. Finite element approximation of an incompressible chemically reacting non-Newtonian fluid , 2017, 1703.04766.
[7] Volker John,et al. Finite Element Methods for Incompressible Flow Problems , 2016 .
[8] Anders Logg,et al. The FEniCS Project Version 1.5 , 2015 .
[9] Petra Pustejovská,et al. Existence Analysis for a Model Describing Flow of an Incompressible Chemically Reacting Non-Newtonian Fluid , 2014, SIAM J. Math. Anal..
[10] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[11] S. Percival,et al. Hyaluronic Acid (HA) Viscosupplementation on Synovial Fluid Inflammation in Knee Osteoarthritis: A Pilot Study , 2013, The open orthopaedics journal.
[12] T. Tamer. Hyaluronan and synovial joint: function, distribution and healing , 2013, Interdisciplinary toxicology.
[13] Miroslav Bulíček,et al. On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index , 2013 .
[14] P. Pustejovská. Biochemical and Mechanical Processes in Synovial Fluids: Modeling, Analysis and Computational Simulations , 2012 .
[15] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[16] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[17] Jaroslav Hron,et al. On the Modeling of the Synovial Fluid , 2010 .
[18] R. Glowinski,et al. Qualitative properties and approximation of solutions of Bingham flows: On the stabilization for large time and the geometry of the support , 2010 .
[19] R. Glowinski,et al. OPERATOR-SPLITTING METHODS FOR THE SIMULATION OF BINGHAM VISCO-PLASTIC FLOW , 2002 .
[20] Roland Glowinski,et al. Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution , 2000, Numer. Linear Algebra Appl..
[21] R. Mason,et al. Characterization of the effect of high molecular weight hyaluronan on trans‐synovial flow in rabbit knees , 1999, The Journal of physiology.
[22] Jindřich Nečas,et al. Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .
[23] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[24] E. Morris,et al. Conformation and dynamic interactions in hyaluronate solutions. , 1980, Journal of molecular biology.
[25] Van C. Mow,et al. Rheological Equations for Synovial Fluids , 1978 .
[26] N. Hadler,et al. Structure of hyaluronic acid in synovial fluid and its influence on the movement of solutes. , 1977, Seminars in arthritis and rheumatism.
[27] J. Guermond,et al. Finite Elements I , 2021, Texts in Applied Mathematics.
[28] Roland Glowinski,et al. When Bingham meets Bratu: mathematical and computational investigations , 2021, ESAIM: Control, Optimisation and Calculus of Variations.
[29] David A. Ham,et al. Mesh dependence in PDE-constrained optimisation , 2017 .
[30] M. Karsdal,et al. Chapter 31 – Structural Biomarkers , 2016 .
[31] Bernd Eggers,et al. Nonlinear Functional Analysis And Its Applications , 2016 .
[32] R. Petty,et al. Chapter 2 – STRUCTURE AND FUNCTION , 2011 .
[33] Kumbakonam R. Rajagopal,et al. Partial Differential Equations and Fluid Mechanics: Mathematical results concerning unsteady flows of chemically reacting incompressible fluids , 2009 .
[34] Dietrich Braess,et al. Finite Elements: Notation , 2007 .
[35] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[36] John W. Barrett,et al. Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities , 1994 .
[37] S. R. Kasiviswanathan,et al. Generalized dispersion in a synovial fluid of human joints. , 1991, Biorheology.
[38] R. Glowinski,et al. Sur l'approximation d'une inéquation variationnelle elliptique de type Bingham , 1976 .
[39] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[40] par J. Cea,et al. Methodes numeriques pour i'ecoulement laminaire d'un fluide rigide viscoplastique incompressible , 1972 .
[41] J. Lions. Écoulement d'un fluide rigide visco-plastique incompressible , 1970 .