Nonlinear iterative approximation of steady incompressible chemically reacting flows

. We consider a system of nonlinear partial differential equations modelling steady flow of an incompressible chemically reacting non-Newtonian fluid, whose viscosity depends on both the shear-rate and the concentration; in particular, the viscosity is of power-law type, with a power-law index that depends on the concentration. We prove that the weak solution, whose existence was already established in the literature, is unique, given some strengthened assumptions on the diffusive flux and the stress tensor, for smallenoughdata.Wethenshowthattheuniquenessresultcanbeappliedtoamodeldescribingthesynovial fluid. Furthermore, in the latter context, we prove the convergence of a nonlinear iteration scheme; the proposed scheme is remarkably simple and it amounts to solving a linear Stokes–Laplace system at each step. Numerical experiments are performed, which confirm the theoretical findings.

[1]  Endre Süli,et al.  Adaptive iterative linearised finite element methods for implicitly constituted incompressible fluid flow problems and its application to Bingham fluids , 2021, Applied Numerical Mathematics.

[2]  E. Süli,et al.  On the convergence rate of the Kačanov scheme for shear-thinning fluids , 2021, Calcolo.

[3]  Endre Süli,et al.  Uniform Hölder-norm bounds for finite element approximations of second-order elliptic equations , 2020, IMA Journal of Numerical Analysis.

[4]  M. Bulíček,et al.  On the Existence of Classical Solution to the Steady Flows of Generalized Newtonian Fluid with Concentration Dependent Power-Law Index , 2018, Journal of Mathematical Fluid Mechanics.

[5]  Endre Süli,et al.  Finite element approximation of steady flows of generalized Newtonian fluids with concentration-dependent power-law index , 2017, Math. Comput..

[6]  Seungchan Ko,et al.  Finite element approximation of an incompressible chemically reacting non-Newtonian fluid , 2017, 1703.04766.

[7]  Volker John,et al.  Finite Element Methods for Incompressible Flow Problems , 2016 .

[8]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[9]  Petra Pustejovská,et al.  Existence Analysis for a Model Describing Flow of an Incompressible Chemically Reacting Non-Newtonian Fluid , 2014, SIAM J. Math. Anal..

[10]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[11]  S. Percival,et al.  Hyaluronic Acid (HA) Viscosupplementation on Synovial Fluid Inflammation in Knee Osteoarthritis: A Pilot Study , 2013, The open orthopaedics journal.

[12]  T. Tamer Hyaluronan and synovial joint: function, distribution and healing , 2013, Interdisciplinary toxicology.

[13]  Miroslav Bulíček,et al.  On Existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index , 2013 .

[14]  P. Pustejovská Biochemical and Mechanical Processes in Synovial Fluids: Modeling, Analysis and Computational Simulations , 2012 .

[15]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[16]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[17]  Jaroslav Hron,et al.  On the Modeling of the Synovial Fluid , 2010 .

[18]  R. Glowinski,et al.  Qualitative properties and approximation of solutions of Bingham flows: On the stabilization for large time and the geometry of the support , 2010 .

[19]  R. Glowinski,et al.  OPERATOR-SPLITTING METHODS FOR THE SIMULATION OF BINGHAM VISCO-PLASTIC FLOW , 2002 .

[20]  Roland Glowinski,et al.  Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution , 2000, Numer. Linear Algebra Appl..

[21]  R. Mason,et al.  Characterization of the effect of high molecular weight hyaluronan on trans‐synovial flow in rabbit knees , 1999, The Journal of physiology.

[22]  Jindřich Nečas,et al.  Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  E. Morris,et al.  Conformation and dynamic interactions in hyaluronate solutions. , 1980, Journal of molecular biology.

[25]  Van C. Mow,et al.  Rheological Equations for Synovial Fluids , 1978 .

[26]  N. Hadler,et al.  Structure of hyaluronic acid in synovial fluid and its influence on the movement of solutes. , 1977, Seminars in arthritis and rheumatism.

[27]  J. Guermond,et al.  Finite Elements I , 2021, Texts in Applied Mathematics.

[28]  Roland Glowinski,et al.  When Bingham meets Bratu: mathematical and computational investigations , 2021, ESAIM: Control, Optimisation and Calculus of Variations.

[29]  David A. Ham,et al.  Mesh dependence in PDE-constrained optimisation , 2017 .

[30]  M. Karsdal,et al.  Chapter 31 – Structural Biomarkers , 2016 .

[31]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[32]  R. Petty,et al.  Chapter 2 – STRUCTURE AND FUNCTION , 2011 .

[33]  Kumbakonam R. Rajagopal,et al.  Partial Differential Equations and Fluid Mechanics: Mathematical results concerning unsteady flows of chemically reacting incompressible fluids , 2009 .

[34]  Dietrich Braess,et al.  Finite Elements: Notation , 2007 .

[35]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[36]  John W. Barrett,et al.  Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities , 1994 .

[37]  S. R. Kasiviswanathan,et al.  Generalized dispersion in a synovial fluid of human joints. , 1991, Biorheology.

[38]  R. Glowinski,et al.  Sur l'approximation d'une inéquation variationnelle elliptique de type Bingham , 1976 .

[39]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[40]  par J. Cea,et al.  Methodes numeriques pour i'ecoulement laminaire d'un fluide rigide viscoplastique incompressible , 1972 .

[41]  J. Lions Écoulement d'un fluide rigide visco-plastique incompressible , 1970 .