The number of Reidemeister moves needed for unknotting

There is a positive constant c1 such that for any diagram D representing the unknot, there is a sequence of at most 2 c1n Reidemeister moves that will convert it to a trivial knot diagram, where n is the number of crossings in D. A similar result holds for elementary moves on a polygonal knot K embedded in the 1-skeleton of the interior of a compact, orientable, triangulated P L 3-manifold M. There is a positive constant c2 such that for each t � 1, if M consists of t tetrahedra, and K is unknotted, then there is a sequence of at most 2 c 2t elementary moves in M which transforms K to a triangle contained inside one tetrahedron of M. We obtain explicit values for c1 and c2.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  J. W. Alexander,et al.  On Types of Knotted Curves , 1926 .

[3]  K. Reidemeister Elementare Begründung der Knotentheorie , 1927 .

[4]  K. Reidemeister,et al.  Knoten und Gruppen , 1927 .

[5]  Hellmuth Kneser,et al.  Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .

[6]  Bemerkungen zur knotentheorie , 1934 .

[7]  Horst Schubert,et al.  Bestimmung der Primfaktorzerlegung von Verkettungen , 1961 .

[8]  W. Haken,et al.  Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3-Mannigfaltigkeiten , 1961 .

[9]  W. Haken Theorie der Normalflächen , 1961 .

[10]  J. Hudson Piecewise linear topology , 1966 .

[11]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[12]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[13]  G. Budworth The Knot Book , 1983 .

[14]  J. Hass,et al.  Intersections of curves on surfaces , 1985 .

[15]  David Avis,et al.  Triangulating point sets in space , 1987, Discret. Comput. Geom..

[16]  J. Hyam Rubinstein,et al.  PL equivariant surgery and invariant decompositions of 3-manifolds , 1989 .

[17]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[18]  András Sebö,et al.  Hilbert Bases, Caratheodory's Theorem and Combinatorial Optimization , 1990, IPCO.

[19]  Studying links via closed braids IV: composite links and split links , 1990, math/0407403.

[20]  Dominic Welsh,et al.  Knots and braids: Some algorithmic questions , 1991, Graph Structure Theory.

[21]  J. Birman,et al.  Studying links via closed braids. V. The unlink , 1992 .

[22]  Erratum: Knot theory and statistical mechanics , 1993 .

[23]  Dominic Welsh,et al.  The Complexity of Knots , 1993 .

[24]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[25]  William Jaco,et al.  Algorithms for the complete decomposition of a closed $3$-manifold , 1995 .

[26]  Louis H. Kauffman,et al.  Knot theory and statistical mechanics , 1997 .

[27]  Ronald C. Read,et al.  The knot book: An elementary introduction to the mathematical theory of knots , 1997, Complex..

[28]  Joel Hass,et al.  Algorithms for recognizing knots and 3-manifolds , 1998 .

[29]  Stefano Galatolo On a problem in effective knot theory , 1998 .

[30]  Michael D. Hirsch,et al.  A new algorithm for recognizing the unknot , 1998 .

[31]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[32]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.