Intraocular lens materials and styles: a review.

Biomaterial science has lead to the development of a variety of foldable intraocular lens (IOL) biomaterials. This literature review examines these lenses from both a basic science and a clinical perspective. By most parameters, hydrogel, soft acrylic and silicone IOL are better than polymethylmethacrylate (PMMA) lenses. Plate haptic silicone IOL have the lowest incidence of cystoid macula oedema and posterior capsule opacification, but these lenses require an intact anterior capsularhexis and posterior capsule. Yttrium aluminium garnet (YAG) laser capsulotomy must be delayed at least 3 months to avoid posterior lens dislocation. Silicone has the lowest threshold for YAG laser damage of all IOL materials and also adheres irreversibly to silicone oil with subsequent optical impairment. Three piece silicone IOL with polypropylene haptics have a higher incidence of decentration, pigment adherence and capsule opacification compared with PMMA haptics. Hydrogel lenses are very biocompatible and resistant to YAG laser damage, but pigment adheres to the surface more readily than PMMA. Soft acrylic IOL unfold slowly, resulting in controlled insertion, but it is possible to crack the lens and some lenses develop glistenings due to water accumulation. There are significant socioeconomic implications to the large differences in posterior capsule opacification rates between the various biomaterials and the lens styles.

[1]  J. Holladay,et al.  Silicone intraocular lens resolution in air and in water , 1988, Journal of cataract and refractive surgery.

[2]  A. T. Milauskas Capsular bag fixation of one‐piece silicone lenses , 1990, Journal of cataract and refractive surgery.

[3]  I. Constable,et al.  Retinal detachment following Nd:YAG capsulotomy. , 1988, Australian and New Zealand journal of ophthalmology.

[4]  J. Menikoff,et al.  A case-control study of risk factors for postoperative endophthalmitis. , 1991, Ophthalmology.

[5]  D. Apple,et al.  Pathology of silicone intraocular lenses in human eyes obtained postmortem , 1995, Journal of cataract and refractive surgery.

[6]  D. Apple,et al.  Neodymium:YAG laser damage on silicone intraocular lenses: A comparison of lesions on explanted lenses and experimentally produced lesions , 1994, Journal of cataract and refractive surgery.

[7]  C. Joo,et al.  Compatibility of intraocular lenses with blood and connective tissue cells measured by cellular deposition and inflammatory response in vitro , 1992, Journal of cataract and refractive surgery.

[8]  M. Batterbury,et al.  Long‐term endothelial cell loss and breakdown of the blood‐aqueous barrier in cataract surgery , 1991, Journal of cataract and refractive surgery.

[9]  S. Masket Pseudophakic posterior iris chafing syndrome , 1986, Journal of cataract and refractive surgery.

[10]  T. Oshika,et al.  Two year clinical study of a soft acrylic intraocular lens , 1996, Journal of cataract and refractive surgery.

[11]  M. Maltarello,et al.  Ultrastructural investigation demonstrating reduced cell adhesion on heparin-surface-modified intraocular lenses. , 1991, Ophthalmic research.

[12]  M. Galin,et al.  Detection, removal, and effect of unpolymerized methylmethacrylate in intraocular lenses. , 1977, American journal of ophthalmology.

[13]  B. Philipson,et al.  Cellular reactions on heparin surface-modified versus regular PMMA lenses during the first postoperative month. A double-masked and randomized study using specular microphotography. , 1990, Ophthalmology.

[14]  R. Christ,et al.  Accelerated hydrolytic and ultraviolet aging studies on SI‐18NB and SI‐20NB silicone lenses , 1992, Journal of cataract and refractive surgery.

[15]  W. Reichert,et al.  Polyimides as biomaterials: preliminary biocompatibility testing. , 1993, Biomaterials.

[16]  T. Salah,et al.  Effect of incision size on early postoperative visual rehabilitation after cataract surgery and intraocular lens implantation , 1993, Journal of cataract and refractive surgery.

[17]  S. O. Hansen,et al.  Posterior capsular opacification and intraocular lens decentration Part I: Comparison of various posterior chamber lens designs implanted in the rabbit model , 1988, Journal of cataract and refractive surgery.

[18]  P. Bath,et al.  A comparison of Nd:YAG laser damage thresholds for PMMA and silicone intraocular lenses. , 1986, Investigative ophthalmology & visual science.

[19]  Stuart J. Cumming Postoperative complications and uncorrected acuities after implantation of plate haptic silicone and three‐piece silicone intraocular lenses , 1993, Journal of cataract and refractive surgery.

[20]  J. Cumming Capsulotomy Rate in Silicon Plate Haptic and Prolene Loop IOLs , 1994 .

[21]  E. Sørensen,et al.  One year follow‐up study on polymetacrylate and hydrogel intraocular lenses , 1991 .

[22]  R. S. Larson,et al.  Retinal detachment after neodymium:YAG laser posterior capsulotomy. , 1989, American journal of ophthalmology.

[23]  R. Menapace,et al.  Cellular invasion on hydrogel and poly(methyl methacrylate) implants: An in vivo study , 1991, Journal of cataract and refractive surgery.

[24]  S. Van Gent,et al.  Evaluation of the chemical, optical, and mechanical properties of elastomeric intraocular lens materials and their clinical significance , 1989, Journal of cataract and refractive surgery.

[25]  H Liesenhoff,et al.  Comparison of the optical and visual quality of poly(methyl methacrylate) and silicone intraocular lenses , 1993, Journal of cataract and refractive surgery.

[26]  C. Huber,et al.  Secondary evaluation of hydrogel lens implants , 1990, Eye.

[27]  D. Sanders,et al.  Visual, astigmatic, and inflammatory results with the Staar AA-4203 single-piece foldable IOL: a randomized, prospective study. , 1992, Ophthalmic surgery.

[28]  D. Apple,et al.  The capsular bag after short- and long-term fixation of intraocular lenses. , 1995, Ophthalmology.

[29]  Randall J. Olson,et al.  Visual significance of glistenings seen in the AcrySof intraocular lens , 1996, Journal of cataract and refractive surgery.

[30]  A. Irvine,et al.  Posterior dislocation of plate haptic silicone lenses. , 1996, Archives of ophthalmology.

[31]  D. Koch,et al.  Effect of transscleral neodymium: YAG cyclophotocoagulation on intraocular lenses. , 1990, Ophthalmic surgery.

[32]  F. Speizer,et al.  Silicone breast implants and the risk of connective-tissue diseases and symptoms. , 1995, The New England journal of medicine.

[33]  C. Puliafito,et al.  Cystoid macular edema, retinal detachment, and glaucoma after Nd:YAG laser posterior capsulotomy. , 1991, American journal of ophthalmology.

[34]  D. Apple,et al.  Pathologic findings of an explanted silicone intraocular lens , 1986, Journal of cataract and refractive surgery.

[35]  J. H. Levy,et al.  Clinical endothelial cell loss following phacoemulsification and silicone or polymethylmethacrylate lens implantation , 1988, Journal of cataract and refractive surgery.

[36]  D. Sanders,et al.  Effect of an ultraviolet-filtering intraocular lens on cystoid macular edema. , 1985, Ophthalmology.

[37]  K. Bartz-Schmidt,et al.  Intraokulare Silikonlinsen und Silikonöl , 1995 .

[38]  R. Kershner Silicone Intraocular Lens Implant Discoloration in Humans-Reply , 1991 .

[39]  T. Oshika,et al.  Comparative study of intraocular lens implantation through 3.2- and 5.5-mm incisions. , 1994, Ophthalmology.

[40]  L. G. Artaria,et al.  Langzeitergebnisse nach Implantation faltbarer Silikon-Hinterkammerlinsen , 1994 .

[41]  D. Apple,et al.  Activation of complement in human serum by some synthetic polymers used for intraocular lenses. , 1987, Biomaterials.

[42]  S. C. Richards,et al.  Evaluation of the biocompatibility and fixation of a new silicone intraocular lens in the feline model , 1989, Journal of cataract and refractive surgery.

[43]  K. Shimizu,et al.  Physical characteristics of various intraocular lenses , 1986, Nippon Ganka Gakkai zasshi.

[44]  U. Scholz,et al.  Langzeitergebnisse nach Implantation einer Plattenhaptik-Silikonlinse in den Kapselsack , 1994 .

[45]  T. Kohnen,et al.  [The anti-inflammatory effect of heparin-containing infusion solutions during phacoemulsification]. , 1995, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[46]  R. Steinert,et al.  Effect of folding instruments on silicone intraocular lenses , 1994, Journal of cataract and refractive surgery.

[47]  D R Sanders,et al.  Effect of cataract wound incision size on acute changes in corneal topography , 1993, Journal of cataract and refractive surgery.

[48]  J. H. Levy,et al.  Astigmatic changes after cataract surgery with 5.1 mm and 3.5 mm sutureless incisions , 1994, Journal of cataract and refractive surgery.

[49]  J. Shepherd Capsular opacification associated with silicone implants , 1989, Journal of cataract and refractive surgery.

[50]  P. McDonnell,et al.  Effect of therapeutic ultrasound on intraocular lenses. , 1986, Ophthalmic surgery.

[51]  J. Federman,et al.  Irreversible silicone oil adhesion to silicone intraocular lenses. A clinicopathologic analysis. , 1996, Ophthalmology.

[52]  H. Jenkins,et al.  Breast augmentation: a risk factor for breast cancer? , 1992, The New England journal of medicine.

[53]  D. Leaming Practice styles and preferences of ASCRS members—1995 survey , 1996, Journal of cataract and refractive surgery.

[54]  Andrew W. Maxwell,et al.  Complement activation by surface modified poly(methyl methacrylate) intraocular lenses , 1991, Journal of cataract and refractive surgery.

[55]  D. Tingey,et al.  Corneal endothelial response to polymethylmethacrylate versus hydrogel lenses after phacoemulsification. , 1991, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[56]  F. Docchio,et al.  Comprehensive study of damage to intraocular lenses by single and multiple nanosecond neodymium: YAG laser pulses , 1990, Journal of cataract and refractive surgery.

[57]  Rog Sj,et al.  Ultraviolet effects on visual acuity in pseudophakia. , 1986 .

[58]  G. Manni,et al.  Decentration of Posterior Chamber Iol: Effects of Loop Material and Fixation Technique , 1994, European Journal of Ophthalmology.

[59]  W. Konen,et al.  [Intraocular silicone lenses and silicone oil]. , 1995, Klinische Monatsblätter für Augenheilkunde.

[60]  M. Batterbury,et al.  The adherence of silicone oil to standard and heparin-coated PMMA intraocular lenses , 1994, Eye.

[61]  M. Yanoff,et al.  Association between surgically-induced astigmatism and cataract incision size in the early postoperative period. , 1993, Ophthalmic surgery.

[62]  M. Ostrick,et al.  Keratometric cylinder and visual performance following phacoemulsification and implantation with silicone small‐incision or poly(methyl methacrylate) intraocular lenses , 1991, Journal of cataract and refractive surgery.

[63]  Stuart J. Cumming Surgical complications and visual acuity results in 536 cases of plate haptic silicone lens implantation , 1993, Journal of cataract and refractive surgery.

[64]  C. Cunanan,et al.  Surface properties of intraocular lens materials and their influence on in vitro cell adhesion , 1991, Journal of cataract and refractive surgery.

[65]  F. O'Donnell,et al.  Lens epithelial inhibition by PMMA optic: Implications for lens design , 1986, Journal of cataract and refractive surgery.

[66]  Visual disturbances associated with oval‐optic poly(methyl methacrylate) and round‐optic silicone intraocular lenses , 1994, Journal of cataract and refractive surgery.