Efficient Bayesian credible-region certification for quantum-state tomography

Standard Bayesian credible-region theory for constructing an error region on the unique estimator of an unknown state in general quantum-state tomography to calculate its size and credibility relies on heavy Monte~Carlo sampling of the state space followed by sample rejection. This conventional method typically gives negligible yield for very small error regions originating from large datasets. We propose an operational reformulated theory to compute both size and credibility from region-average quantities that in principle convey information about behavior of these two properties as the credible-region changes. We next suggest the accelerated hit-and-run Monte~Carlo sampling, customized to the construction of Bayesian error-regions, to efficiently compute region-average quantities, and provide its complexity estimates for quantum states. Finally by understanding size as the region-average distance between two states in the region (measured for instance with either the Hilbert-Schmidt, trace-class or Bures distance), we derive approximation formulas to analytically estimate both distance-induced size and credibility under the pseudo-Bloch parametrization without resorting to any Monte~Carlo computation.

[1]  H. Sommers,et al.  Hilbert–Schmidt volume of the set of mixed quantum states , 2003, quant-ph/0302197.

[2]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  Robert L. Smith,et al.  An analysis of a variation of hit-and-run for uniform sampling from general regions , 2011, TOMC.

[5]  Y. S. Teo,et al.  Bayesian error regions in quantum estimation I: analytical reasonings , 2018, New Journal of Physics.

[6]  Ronald Christensen,et al.  Testing Fisher, Neyman, Pearson, and Bayes , 2005 .

[7]  Michael Evans,et al.  Statistical Reasoning: Choosing and Checking the Ingredients, Inferences Based on a Measure of Statistical Evidence with Some Applications , 2018, Entropy.

[8]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[9]  Matthias Christandl,et al.  Reliable quantum state tomography. , 2011, Physical review letters.

[10]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[11]  Santosh S. Vempala,et al.  Hit-and-run from a corner , 2004, STOC '04.

[12]  J. Butcher Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[13]  E. Knill,et al.  Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.

[14]  H. Ng,et al.  Optimal error regions for quantum state estimation , 2013, 1302.4081.

[15]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[16]  Uniwersytet Jagiello,et al.  Hilbert-Schmidt volume of the set of mixed quantum states , 2003 .

[17]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[18]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[19]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[20]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[21]  Michael Evans,et al.  Measuring statistical evidence using relative belief , 2015, Computational and structural biotechnology journal.

[22]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[23]  Santosh S. Vempala,et al.  A practical volume algorithm , 2016, Math. Program. Comput..

[24]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[25]  Y. S. Teo,et al.  Quantum-state reconstruction by maximizing likelihood and entropy. , 2011, Physical review letters.

[26]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[27]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[28]  C. Oh,et al.  Probing Bayesian Credible Regions Intrinsically: A Feasible Error Certification for Physical Systems. , 2019, Physical review letters.

[29]  Jiangwei Shang,et al.  Optimal error intervals for properties of the quantum state , 2016, 1602.05780.

[30]  Robert L. Smith,et al.  Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..

[31]  A. Soshnikov,et al.  On finite rank deformations of Wigner matrices , 2011, 1103.3731.

[32]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[33]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[34]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[35]  P. Kielanowski Geometric Methods in Physics , 2013 .

[36]  Huangjun Zhu,et al.  Quantum state tomography with fully symmetric measurements and product measurements , 2011 .

[37]  R. Blume-Kohout Robust error bars for quantum tomography , 2012, 1202.5270.

[38]  Jiangwei Shang,et al.  Superfast maximum likelihood reconstruction for quantum tomography , 2016, 1609.07881.

[39]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[40]  Nicholas J. Higham,et al.  Cholesky factorization , 2009 .

[41]  Renato Renner,et al.  Practical and Reliable Error Bars in Quantum Tomography. , 2015, Physical review letters.

[42]  Nicholas J. Higham,et al.  Algorithms for the matrix pth root , 2005, Numerical Algorithms.

[43]  Robert L. Smith The hit-and-run sampler: a globally reaching Markov chain sampler for generating arbitrary multivariate distributions , 1996, Winter Simulation Conference.

[44]  Monte Carlo sampling from the quantum state space. I , 2014, 1407.7805.

[45]  W. Marsden I and J , 2012 .

[46]  Huangjun Zhu,et al.  Quantum state estimation with informationally overcomplete measurements , 2014, 1404.3453.

[47]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[48]  Yong Siah Teo,et al.  Bayesian error regions in quantum estimation II: region accuracy and adaptive methods , 2018 .

[49]  László Lovász,et al.  Hit-and-run mixes fast , 1999, Math. Program..

[50]  Robert Tibshirani,et al.  An Introduction to the Bootstrap CHAPMAN & HALL/CRC , 1993 .

[51]  Volume of the quantum mechanical state space , 2006, math-ph/0604032.

[52]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[53]  Lukasz Rudnicki,et al.  Error regions in quantum state tomography: computational complexity caused by geometry of quantum states , 2016, 1608.00374.