Towards quantifying the relative tectonic activity in the Trans-Yamuna segment of NW Himalaya

[1]  M. Mehta,et al.  Active tectonics in the Main Boundary Thrust zone, Garhwal Himalaya, as evident from palaeoseismic signatures, morphotectonic features and PSI base ground deformation , 2022, Geological Journal.

[2]  H. El-Askary,et al.  Accuracy Assessment, Comparative Performance, and Enhancement of Public Domain Digital Elevation Models (ASTER 30 m, SRTM 30 m, CARTOSAT 30 m, SRTM 90 m, MERIT 90 m, and TanDEM-X 90 m) Using DGPS , 2022, Remote. Sens..

[3]  Zhanyu Wei,et al.  Surface Slip Distribution and Earthquake Rupture Model of the Fuyun Fault, China, Based on High-Resolution Topographic Data , 2021, Lithosphere.

[4]  Abdelrahman Khalifa,et al.  Morpho-tectonic Assessment of the Abu-Dabbab Area, Eastern Desert, Egypt: Insights from Remote Sensing and Geospatial Analysis , 2021, ISPRS Int. J. Geo Inf..

[5]  V. Levashenko,et al.  Review of Some Applications of Unmanned Aerial Vehicles Technology in the Resource-Rich Country , 2021, Applied Sciences.

[6]  Khayingshing Luirei,et al.  Morphotectonic evolution of the Quaternary landforms in the Yangui River basin in the Indo-Myanmar Range , 2021 .

[7]  C. Hugenholtz,et al.  Weather constraints on global drone flyability , 2021, Scientific Reports.

[8]  Neha P. Joshi,et al.  Reanalyzing the geomorphic developments along tectonically active Soan Thrust, NW Himalaya, India , 2021 .

[9]  David Shean,et al.  Automated digital elevation model (DEM) generation from very-high-resolution Planet SkySat triplet stereo and video imagery , 2021 .

[10]  A. Braun Retrieval of digital elevation models from Sentinel-1 radar data – open applications, techniques, and limitations , 2021 .

[11]  Peng Guo,et al.  New Constraints on Slip Behavior of the Jianshui Strike-Slip Fault from Faulted Stream Channel Risers and Airborne Lidar Data, SE Tibetan Plateau, China , 2021, Remote. Sens..

[12]  Pedro Cabral,et al.  Vertical Accuracy Assessment of ALOS PALSAR, GMTED2010, SRTM and Topodata Digital Elevation Models , 2021, GISTAM.

[13]  O. Alexandrov,et al.  Automated Processing of Declassified KH-9 Hexagon Satellite Images for Global Elevation Change Analysis Since the 1970s , 2020, Frontiers in Earth Science.

[14]  Shuhab D. Khan,et al.  Active Tectonics of the Frontal Himalayas: An Example from the Manzai Ranges in the Recess Setting, Western Pakistan , 2020, Remote. Sens..

[15]  Haiqiang Fu,et al.  Evaluation of the Vertical Accuracy of Open Global DEMs over Steep Terrain Regions Using ICESat Data: A Case Study over Hunan Province, China , 2020, Sensors.

[16]  Md. Shahinoor Rahman,et al.  Evaluating the Effects of Digital Elevation Models in Landslide Susceptibility Mapping in Rangamati District, Bangladesh , 2020, Remote. Sens..

[17]  P. K. Goswami,et al.  Pattern of active tectonic deformation across the Churachandpur-Mao thrust zone of Manipur Hills, Indo-Myanmar range, NE India: Inferences from geomorphic features and indices , 2020 .

[18]  K. Buczek,et al.  Evaluation of tectonic activity using morphometric indices: case study of the Tatra Mts. (Western Carpathians, Poland) , 2020, Environmental Earth Sciences.

[19]  H. Özdemir,et al.  Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey , 2019, Environmental Earth Sciences.

[20]  Wenyu Gong,et al.  DEM generation from Worldview-2 stereo imagery and vertical accuracy assessment for its application in active tectonics , 2019, Geomorphology.

[21]  Shuanghu Fan,et al.  Geomorphic evolution and neotectonics of the Qianhe River Basin on the southwest margin of the Ordos Block, North China , 2019, Journal of Asian Earth Sciences.

[22]  Keqi Zhang,et al.  Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding , 2019, Remote Sensing of Environment.

[23]  Biswajeet Pradhan,et al.  Assessment of Landslide Susceptibility Using Statistical- and Artificial Intelligence-Based FR-RF Integrated Model and Multiresolution DEMs , 2019, Remote. Sens..

[24]  J. Malik,et al.  Paleoseismic evidence of a major earthquake event(s) along the hinterland faults: Pinjore Garden Fault (PGF) and Jhajra Fault (JF) in northwest Himalaya, India , 2019, Tectonophysics.

[25]  Param K. Gautam,et al.  Strong seismic coupling underneath Garhwal–Kumaun region, NW Himalaya, India , 2019, Earth and Planetary Science Letters.

[26]  Anupam K. Singh,et al.  Vertical accuracy evaluation of SRTM-GL1, GDEM-V2, AW3D30 and CartoDEM-V3.1 of 30-m resolution with dual frequency GNSS for lower Tapi Basin India , 2018 .

[27]  R. Langridge,et al.  Frontal fault location and most recent earthquake timing for the Alpine Fault at Whataroa, Westland, New Zealand , 2018 .

[28]  Xia Wang,et al.  DEM generation using Ziyuan-3 mapping satellite imagery without ground control points , 2018 .

[29]  Vimal Singh,et al.  Identifying active structures in the Chitwan Dun, Central Nepal, using longitudinal river profiles and SL index analysis , 2017 .

[30]  V. Gahalaut,et al.  Continuous GPS measurements of crustal deformation in Garhwal-Kumaun Himalaya , 2017 .

[31]  R. Jayangondaperumal,et al.  A paleoseismic age model for large-magnitude earthquakes on fault segments of the Himalayan Frontal Thrust in the Central Seismic Gap of northern India , 2017 .

[32]  Gerhard Krieger,et al.  Generation and performance assessment of the global TanDEM-X digital elevation model , 2017 .

[33]  R. Jayangondaperumal,et al.  Late Pleistocene-Holocene strain release by normal faulting along the Main Boundary Thrust at Logar in the northwestern Kumaon Sub Himalaya, India , 2017 .

[34]  Bodo Bookhagen,et al.  Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau , 2017 .

[35]  A. Bhattacharya,et al.  Qualitative and quantitative assessment of TanDEM-X DEM over western Himalayan glaciated terrain , 2017 .

[36]  Ian Joughin,et al.  An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery , 2016 .

[37]  Ajai,et al.  Bias corrections of CartoDEM using ICESat-GLAS data in hilly regions , 2015 .

[38]  Sabu Joseph,et al.  Sensitivity of digital elevation models: The scenario from two tropical mountain river basins of the Western Ghats, India , 2014 .

[39]  Mohamed Moncef Turki,et al.  Recent tectonic activity of the Gafsa fault through morphometric analysis: Southern Atlas of Tunisia , 2014 .

[40]  Harald van der Werff,et al.  Potential of ESA's Sentinel-2 for geological applications , 2014 .

[41]  V. C. Thakur,et al.  Partitioning of convergence in Northwest Sub-Himalaya: estimation of late Quaternary uplift and convergence rates across the Kangra reentrant, North India , 2014, International Journal of Earth Sciences.

[42]  V. Gaur,et al.  Contemporary deformation in the Kashmir–Himachal, Garhwal and Kumaon Himalaya: significant insights from 1995–2008 GPS time series , 2014, Journal of Geodesy.

[43]  Wolfgang Schwanghart,et al.  Short Communication: TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences , 2014 .

[44]  Vinay Kumar Sehgal,et al.  Comparative evaluation of horizontal accuracy of elevations of selected ground control points from ASTER and SRTM DEM with respect to CARTOSAT-1 DEM: a case study of Shahjahanpur district, Uttar Pradesh, India , 2013 .

[45]  Samir Bouaziz,et al.  DEM and GIS analysis of sub-watersheds to evaluate relative tectonic activity. A case study of the North–south axis (Central Tunisia) , 2013, Earth Science Informatics.

[46]  Xi-wei Xu,et al.  DEM and GIS analysis of geomorphic indices for evaluating recent uplift of the northeastern margin of the Tibetan Plateau, China , 2013 .

[47]  R. D. Garg,et al.  Evaluation of vertical accuracy of open source Digital Elevation Model (DEM) , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[48]  Roland Siegwart,et al.  Comparing ICP variants on real-world data sets , 2013, Auton. Robots.

[49]  D. Giribabu,et al.  Improving Cartosat-1 DEM accuracy using synthetic stereo pair and triplet , 2013 .

[50]  R. Jayangondaperumal,et al.  Paleoseismic evidence of a surface rupture along the northwestern Himalayan Frontal Thrust (HFT) , 2013 .

[51]  L. Bollinger,et al.  Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255 , 2012, Nature Geoscience.

[52]  G. Philip,et al.  Late Pleistocene and Holocene large magnitude earthquakes along Himalayan Frontal Thrust in the Central Seismic Gap in NW Himalaya, Kala Amb, India , 2012 .

[53]  K. Whipple,et al.  Expression of active tectonics in erosional landscapes , 2012 .

[54]  Yuji Sakuno,et al.  Evaluation of ASTER GDEM2 in Comparison with GDEM1, SRTM DEM and Topographic-Map-Derived DEM Using Inundation Area Analysis and RTK-dGPS Data , 2012, Remote. Sens..

[55]  R. Gloaguen,et al.  Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis , 2012 .

[56]  A. P. Pradeepkumar,et al.  Geographic information system–based morphometric characterization of sub-watersheds of Meenachil river basin, Kottayam district, Kerala, India , 2012 .

[57]  R. Anderson,et al.  Tectonic Geomorphology: Burbank/Tectonic Geomorphology , 2011 .

[58]  M. Strecker,et al.  Exhumational variability within the Himalaya of northwest India , 2011 .

[59]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[60]  Jin Teng,et al.  Impact of DEM accuracy and resolution on topographic indices , 2010, Environ. Model. Softw..

[61]  Mehran Arian,et al.  Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran , 2010 .

[62]  José Vicente Pérez-Peña,et al.  Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis , 2010 .

[63]  Wolfgang Schwanghart,et al.  TopoToolbox: A set of Matlab functions for topographic analysis , 2010, Environ. Model. Softw..

[64]  Vivek Kumar Singh,et al.  Orthorectification and Digital Elevation Model (DEM) Generation Using Cartosat-1 Satellite Stereo Pair in Himalayan Terrain , 2010, J. Geogr. Inf. Syst..

[65]  A. A. Shah,et al.  Paleoseismic evidence from trench investigation along Hajipur fault, Himalayan Frontal Thrust, NW Himalaya: implications of the faulting pattern on landscape evolution and seismic hazard , 2010 .

[66]  Jean Poesen,et al.  The implications of data selection for regional erosion and sediment yield modelling , 2009 .

[67]  José Vicente Pérez-Peña,et al.  CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain , 2009, Comput. Geosci..

[68]  T. Singh,et al.  Tectonic constraints on watershed development on frontal ridges: Mohand Ridge, NW Himalaya, India , 2009 .

[69]  Deanne Bird,et al.  Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods , 2009 .

[70]  Edward A. Keller,et al.  Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain) , 2008 .

[71]  Andreas Kääb,et al.  Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars from Popocatépetl Volcano, Mexico , 2008 .

[72]  P. Bishop Long‐term landscape evolution: linking tectonics and surface processes , 2007 .

[73]  Peter F. Fisher,et al.  Causes and consequences of error in digital elevation models , 2006 .

[74]  Satadru Bhattacharya,et al.  Neotectonic activity in the Markanda and Bata river basins, Himachal Pradesh, NW Himalaya: A morphotectonic approach , 2006 .

[75]  Pascal Willis,et al.  Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements , 2006 .

[76]  Y. Weidmann,et al.  Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview , 2005 .

[77]  S. Sapkota,et al.  Evidence for a Great Medieval Earthquake (~1100 A.D.) in the Central Himalayas, Nepal , 2005, Science.

[78]  S. Wesnousky,et al.  Earthquake Recurrence and Rupture Dynamics of Himalayan Frontal Thrust, India , 2001, Science.

[79]  Igor V. Florinsky,et al.  Accuracy of Local Topographic Variables Derived from Digital Elevation Models , 1998, Int. J. Geogr. Inf. Sci..

[80]  Carlos López-Vázquez,et al.  Locating Some Types of Random Errors in Digital Terrain Models , 1997, Int. J. Geogr. Inf. Sci..

[81]  Wenjin Zhao,et al.  Deep seismic reflection evidence for continental underthrusting beneath southern Tibet , 1993, Nature.

[82]  R. Tateishi,et al.  Relative DEM production from SPOT data without GCP , 1992 .

[83]  C. Thorne,et al.  Quantitative analysis of land surface topography , 1987 .

[84]  T. Hagen Über eine Überschiebung der tertiären Siwaliks über das rezente Ganges Alluvium in Ostnepal , 1956 .