Enhancement of PEM fuel cell performance at higher temperatures and lower humidities by high performance membrane electrode assembly based on Nafion/zeolite membrane

Abstract This work reports the preparation of Nafion/zeolite composite membranes with different zeolite loading. The structure of the Nafion/zeolite composite membranes are investigated by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and by thermogravimetric analysis (TGA). The introduction of zeolite particles into the Nafion matrix helps to improve the water uptake, proton conductivity and thermal stability of the nanocomposite membranes compared to the virgin Nafion membrane. The SEM analyses have proved the uniform and homogeneous distribution of zeolite in composite membranes. The composite membranes are tested in a single PEMFC with a 5 cm 2 active area operating at the temperature range of 75–120 °C and in humidified under 50% relative humidity (RH) and fully humidified conditions. Single PEMFC tests show that Nafion/zeolite composite membrane is more stable and also performed better than virgin Nafion membrane at low humidity condition. The results indicate the Nafion/zeolite composite membranes could be utilized as the proton exchange membranes for PEMFC.

[1]  Wei Han,et al.  Zeolites and mesoporous materials in fuel cell applications , 2014 .

[2]  Xuan Cheng,et al.  PEM fuel cells operated at 0% relative humidity in the temperature range of 23–120 °C , 2007 .

[3]  Y. Devrim Preparation and testing of Nafion/titanium dioxide nanocomposite membrane electrode assembly by ultrasonic coating technique , 2014 .

[4]  Yuqin Fu,et al.  Novel nanocomposite membranes based on sulfonated mesoporous silica nanoparticles modified sulfonate , 2011 .

[5]  S. Holmes,et al.  Functionalized zeolite A-nafion composite membranes for direct methanol fuel cells , 2007 .

[6]  A. Di Blasi,et al.  Zeolite-based composite membranes for high temperature direct methanol fuel cells , 2005 .

[7]  S. Mintova,et al.  Nanoporous materials with enhanced hydrophilicity and high water sorption capacity , 2008 .

[8]  Jingtao Wang,et al.  Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell , 2008 .

[9]  Stephen J. Paddison,et al.  Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells , 2008 .

[10]  B. Van der Bruggen,et al.  Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration , 1999 .

[11]  M. Mizuhata,et al.  Membrane modification by liquid phase deposition using small amount of TiO2 for high-temperature operation of polymer electrolyte fuel cells , 2013 .

[12]  I. Eroglu,et al.  Improvement of PEMFC performance with Nafion/inorganic nanocomposite membrane electrode assembly prepared by ultrasonic coating technique , 2012 .

[13]  F. G. Üçtuğ,et al.  Characterization and fuel cell performance analysis of polyvinylalcohol–mordenite mixed-matrix membranes for direct methanol fuel cell use , 2011 .

[14]  Paisan Kongkachuichay,et al.  Nafion/Analcime and Nafion/Faujasite composite membranes for polymer electrolyte membrane fuel cells , 2010 .

[15]  Pan Mu,et al.  Self-assembly of durable Nafion/TiO2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells , 2011 .

[16]  S. Jiang,et al.  One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells. , 2010, Chemical communications.

[17]  S. Pitchumani,et al.  Mesostructured-aluminosilicate-Nafion hybrid membranes for direct methanol fuel cells , 2013 .

[18]  Ravindra Datta,et al.  Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells , 2005 .

[19]  Christopher Hebling,et al.  A polymer electrolyte membrane fuel cell system for powering portable computers , 2003 .

[20]  V. Tricoli,et al.  Zeolite–Nafion composites as ion conducting membrane materials , 2003 .

[21]  S. H. Kim,et al.  ZrO2–SiO2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity , 2008 .

[22]  W. Kim,et al.  Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell , 2014 .

[23]  A. Dyer An introduction to zeolite molecular sieves , 1988 .

[24]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[25]  F. C. Wilson,et al.  The morphology in nafion† perfluorinated membrane products, as determined by wide- and small-angle x-ray studies , 1981 .

[26]  James M. Fenton,et al.  Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells , 2006 .

[27]  Atsushi Ogawa,et al.  Nonhumidified intermediate temperature fuel cells using protic ionic liquids. , 2010, Journal of the American Chemical Society.

[28]  W. Wieczorek,et al.  Novel proton conducting composite electrolytes for application in methanol fuel cells , 1999 .

[29]  A. Adell Comparison of the performance obtained in a tropical country, of a solid adsorption, solar-driven refrigerator and a photovoltaic refrigerator , 1985 .

[30]  T. Ohsaka,et al.  Exploring the effects of symmetrical and asymmetrical relative humidity on the performance of H2/air PEM fuel cell at different temperatures , 2007 .

[31]  Sang‐young Lee,et al.  In situ hybrid Nafion/SiO2–P2O5 proton conductors for high-temperature and low-humidity proton exchange membrane fuel cells , 2010 .

[32]  H. N. Yang,et al.  Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC , 2013 .

[33]  Siti Kartom Kamarudin,et al.  Overview on nanostructured membrane in fuel cell applications , 2011 .

[34]  K. S. Dhathathreyan,et al.  Humidification studies on polymer electrolyte membrane fuel cell , 2001 .

[35]  Huanting Wang,et al.  High silica zeolite Y nanocrystals by dealumination and direct synthesis , 2004 .

[36]  Y. Devrim Fabrication and Performance Evaluation of Hybrid Membrane based on a Sulfonated Polyphenyl Sulfone/Phosphotungstic acid/Silica for Proton Exchange Membrane Fuel Cell at Low Humidity Conditions , 2014 .

[37]  S. Licoccia,et al.  On the proton conductivity of Nafion–Faujasite composite membranes for low temperature direct methanol fuel cells , 2011 .

[38]  C. Arcoumanis,et al.  Degradation aspects of water formation and transport in Proton Exchange Membrane Fuel Cell: A review , 2013 .