Unique continuation on a line for harmonic functions

In this paper, we discuss local unique continuation for a harmonic function on lines. By using complex extension, we prove a conditional stability estimation for a harmonic function on a line. Our unique continuation is an intermediate property between the classical unique continuation for a harmonic function and the analytic continuation for a holomorphic function. As an application, we show conditional stability up to the boundary in a Cauchy problem of the Laplace equation.

[1]  Avner Friedman,et al.  Determining Cracks by Boundary Measurements , 1989 .

[2]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[3]  G. Alessandrini,et al.  Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions , 1994 .

[4]  Christopher D. Sogge,et al.  Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators , 1987 .

[5]  Felix E. Browder,et al.  The One-Dimensional Heat Equation , 1984 .

[6]  L. Payne,et al.  Bounds in the Cauchy problem for the Laplace equation , 1960 .

[7]  Victor Isakov New stability results for soft obstacles in inverse scattering , 1993 .

[8]  Masahiro Yamamoto,et al.  Unique continuation for a stationary isotropic lamé system with variable coefficients , 1998 .

[9]  S. Prössdorf,et al.  Local estimation for an integral equation of first kind with analytic kernel , 1998 .

[10]  Victor Isakov,et al.  Inverse Source Problems , 1990 .

[11]  Fritz John,et al.  Continuous dependence on data for solutions of partial differential equations with a prescribed bound , 1960 .

[12]  E. Landis SOME PROBLEMS OF THE QUALITATIVE THEORY OF SECOND ORDER ELLIPTIC EQUATIONS (CASE OF SEVERAL INDEPENDENT VARIABLES) , 1963 .

[13]  C. Kenig,et al.  Weighted Sobolev inequalities and unique continuation for the Laplacian plus lower order terms , 1988 .

[14]  T. Wolff Recent work on sharp estimates in second-order elliptic unique continuation problems , 1993 .

[15]  Michael Pidcock,et al.  The boundary inverse problem for the Laplace equation in two dimensions , 1996 .

[16]  L. Nirenberg Uniqueness in Cauchy problems for differential equations with constant leading coefficients , 1957 .

[17]  D. Jerison Carleman inequalities for the Dirac and Laplace operators and unique continuation , 1986 .

[18]  A. L. BUKHGEIM Extension of Solutions of elliptic equations from discrete sets , 1993 .

[19]  Nirio Shimakura,et al.  Partial Differential Operators of Elliptic Type , 1992 .

[20]  F. Lin,et al.  Unique continuation for elliptic operators: A geometric‐variational approach , 1987 .

[21]  K. Kurata A unique continuation theorem for uniformly elliptic equations with strongly singular potentials , 1993 .

[22]  V. Isakov Appendix -- Function Spaces , 2017 .

[23]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[24]  L. Robbiano,et al.  Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques , 1991 .