ARMA parameter estimation using only output cumulants

Several algorithms are developed to estimate the parameters of a causal nonminimum-phase autoregressive moving average (ARMA) (p,q) system which is excited by an unobservable independently identically distributed non-Gaussian process. The output is contaminated by additive colored Gaussian noise of unknown power spectral density. A fundamental result is presented pertaining to the identifiability of AR parameters, based on the Yule-Walker equations drawn from a (specific) set of (p+1) 1-D slices of the kth (k>2) order output cumulant. Several MA parameter estimation algorithms are developed: one method uses q 1-D slices of the output cumulant; a second method uses only two 1-D cumulant slices. These methods do not involve computation of the residual (i.e. AR compensated) time series or polynomial factorization. Multidimensional versions of the various algorithms are presented. A simulation study demonstrating the effectiveness of the algorithms is included. >

[1]  Jerry M. Mendel,et al.  Adaptive system identification using cumulants , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[2]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[3]  A. Lohmann,et al.  Speckle masking in astronomy: triple correlation theory and applications. , 1983, Applied optics.

[4]  M. Rosenblatt,et al.  Deconvolution and Estimation of Transfer Function Phase and Coefficients for NonGaussian Linear Processes. , 1982 .

[5]  Jitendra K. Tugnait,et al.  Identification of non-minimum phase linear stochastic systems , 1986, Autom..

[6]  M. Rosenblatt Cumulants and cumulant spectra , 1983 .

[7]  J. Cadzow,et al.  Spectral estimation: An overdetermined rational model equation approach , 1982, Proceedings of the IEEE.

[8]  Jitendra Tugnait,et al.  Identification of nonminimum phase linear stochastic systems , 1984, The 23rd IEEE Conference on Decision and Control.

[9]  Jitendra K. Tugnait,et al.  Approaches of FIR system identification with noisy data using higher order statistics , 1990, IEEE Trans. Acoust. Speech Signal Process..

[10]  Jerry M. Mendel,et al.  Use Of Higher-Order Statistics In Signal Processing And System Theory: An Update , 1988, Optics & Photonics.

[11]  G. Giannakis Cumulants: A powerful tool in signal processing , 1987, Proceedings of the IEEE.

[12]  B. Friedlander,et al.  Optimal estimates of MA and ARMA parameters of non-Gaussian processes from high-order cumulants , 1988, Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling.

[13]  Ananthram Swami,et al.  On estimating noncausal nonminimum phase ARMA models of non-Gaussian processes , 1990, IEEE Trans. Acoust. Speech Signal Process..

[14]  Jerry M. Mendel,et al.  Identification of nonminimum phase systems using higher order statistics , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  J. Mendel,et al.  Time and lag recursive computation of cumulants from a state-space model , 1990 .

[16]  J. Mendel,et al.  AR Identifiability Using Cumulants , 1989, Workshop on Higher-Order Spectral Analysis.

[17]  J. Mendel,et al.  Constrained total least squares , 1987, ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[18]  G.B. Giannakis,et al.  Cumulant-based order determination of non-Gaussian ARMA models , 1990, IEEE Trans. Acoust. Speech Signal Process..