Sequent Systems for Negative Modalities
暂无分享,去创建一个
[1] Anna Zamansky,et al. Efficient reasoning with inconsistent information using C-systems , 2015, Inf. Sci..
[2] Anna Zamansky,et al. A paraconsistent view on B and S5 , 2016, Advances in Modal Logic.
[3] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[4] Jonas Schreiber. Natural Deduction Hybrid Systems And Modal Logics , 2016 .
[5] João Marcos. Modality and Paraconsistency , 2005 .
[6] S. Jaskowski. Propositional calculus for contradictory deductive systems , 1969 .
[7] Alessandra Palmigiano,et al. Unified Correspondence as a Proof-Theoretic Tool , 2016, J. Log. Comput..
[8] W. Carnielli,et al. A Taxonomy of C-systems , 2001 .
[9] Ori Lahav,et al. SAT-Based Decision Procedure for Analytic Pure Sequent Calculi , 2014, IJCAR.
[10] João Marcos,et al. On negation: Pure local rules , 2005, J. Appl. Log..
[11] Krister Segerberg,et al. An essay in classical modal logic , 1971 .
[12] D. Holdstock. Past, present--and future? , 2005, Medicine, conflict, and survival.
[13] J. Michael Dunn,et al. Positive modal logic , 1995, Stud Logica.
[14] João Marcos,et al. Negative Modalities, Consistency and Determinedness , 2013, IMLA@UNILOG.
[15] Ryszard Wójcicki,et al. Theory of Logical Calculi , 1988 .
[16] Ori Lahav,et al. It ain't necessarily so: Basic sequent systems for negative modalities , 2016, Advances in Modal Logic.
[17] Chrysafis Hartonas,et al. Modal and temporal extensions of non-distributive propositional logics , 2016, Log. J. IGPL.
[18] J. Dunn,et al. Negation in the Context of Gaggle Theory , 2005, Stud Logica.
[19] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[20] M. Takano. A MODIFIED SUBFORMULA PROPERTY FOR THE MODAL LOGICS K5 AND K5D , 2007 .
[21] Thierry Lucas,et al. Sequent Calculi and Decision Procedures for Weak Modal Systems , 2000, Stud Logica.
[22] Ramon Jansana,et al. Priestley Duality, a Sahlqvist Theorem and a Goldblatt-Thomason Theorem for Positive Modal Logic , 1999, Log. J. IGPL.
[23] Greg Restall. Combining Possibilities and Negations , 1997, Stud Logica.
[24] Hiroya Kawai,et al. Sequential Calculus for a First Order Infinitary Temporal Logic , 1987, Math. Log. Q..
[25] Anna Zamansky,et al. Canonical Calculi: Invertibility, Axiom Expansion and (Non)-determinism , 2009, CSR.
[26] C. Rauszer. An algebraic and Kripke-style approach to a certain extension of intuitionistic logic , 1980 .
[27] João Marcos,et al. Nearly every normal modal logic is paranormal , 2005 .
[28] Heinrich Wansing,et al. Sequent Systems for Modal Logics , 2002 .
[29] L. Humberstone. Contrariety and Subcontrariety: The Anatomy of Negation (with Special Reference to an Example of J.‐Y. Béziau) , 2008 .
[30] S. Jaskowski. A propositional calculus for inconsistent deductive systems , 2004 .
[31] Ori Lahav,et al. A unified semantic framework for fully structural propositional sequent systems , 2013, TOCL.
[32] I. L. Humberstone. Sentence connectives in formal logic , 2010 .
[33] Francesca Poggiolesi,et al. Gentzen Calculi for Modal Propositional Logic , 2010 .
[34] Jean-Yves Béziau. Paraconsistent logic from a modal viewpoint , 2005, J. Appl. Log..