On the Generation of White Samples in Severe Fading Conditions

The aim of this letter is three-fold: 1) to propose a simple and efficient algorithm to generate white samples for the envelope of the <inline-formula> <tex-math notation="LaTeX">${\kappa }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu }$ </tex-math></inline-formula> fading model over the multipath fading clustering parameter within <inline-formula> <tex-math notation="LaTeX">${0< \mu < 0.5}$ </tex-math></inline-formula>, filling an existing gap in the generation of samples of the <inline-formula> <tex-math notation="LaTeX">${\kappa }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu }$ </tex-math></inline-formula> distribution; 2) to propose a simple algorithm to generate white samples for the envelope of the <inline-formula> <tex-math notation="LaTeX">${\alpha }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\eta }$ </tex-math></inline-formula>- <inline-formula> <tex-math notation="LaTeX">${\kappa }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">${\mu }$ </tex-math></inline-formula> fading model; and 3) to propose a simple and near 100% efficient algorithm to generate <inline-formula> <tex-math notation="LaTeX">$ {\kappa }$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$ {\mu }$ </tex-math></inline-formula> Extreme white samples. The algorithms make use of the acceptance–rejection method. The goodness-of-fit is objectively measured via the Kolmogorov–Smirnov test. An application example is given in order to illustrate the use of the algorithms.

[1]  Jeff Frolik On appropriate models for characterizing hyper-rayleigh fading , 2008, IEEE Transactions on Wireless Communications.

[2]  Michel Daoud Yacoub,et al.  The κ-μ Extreme Distribution , 2011, IEEE Transactions on Communications.

[3]  Claude Oestges,et al.  An Experimental Investigation into the Impact of Vehicular Traffic on Interpersonal Wearable-to-Wearable Communications Channels , 2017, IEEE Transactions on Antennas and Propagation.

[4]  Michel Daoud Yacoub,et al.  On the generation of α-η-κ-μ samples with applications , 2017, 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[5]  M.D. Yacoub,et al.  The κ-μ distribution and the η-μ distribution , 2007, IEEE Antennas and Propagation Magazine.

[6]  Mikko Valkama,et al.  A Comprehensive Framework for Spectrum Sensing in Non-Linear and Generalized Fading Conditions , 2017, IEEE Transactions on Vehicular Technology.

[7]  Michel Daoud Yacoub,et al.  Practical, Highly Efficient Algorithm for Generating κ-μ and η-μ Variates and a Near-100% Efficient Algorithm for Generating α-μ Variates , 2012, IEEE Communications Letters.

[8]  F. J. Lopez-Martinez,et al.  Novel Results for the $\kappa$– $\mu$ Extreme Fading Distribution: Generation of White Samples and Capacity Analysis , 2015, IEEE Communications Letters.